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CHAPTER I

Introduction

Since the turn of this century, transient flow behavior in closed
conduits has been recognized as a necessary part of making accurate flow
predictions in fluid systems. 1In response to application requirements
in the past, the technological development of this subject area has been
generally concerned with theory and techniques needed to predict flow
behavior in product pipelines and potential lines associated with hydro-
electric plants.

In the past few years, serious transient flow problems have been
encountered in sophisticated fluid systems on aircraft and missiles that
make pipeline flow predictions seem elementary. It is apparent from an
appraisal of the current ''state of the art" in this field and the require-
ments imposed by modern systems, that new theories and techniques must
be developed. It has been discovered that methods used in the past
severely limit the accuracy of predicting peak pressures and attenuation
characteristics in current systems. Furthermore, the acceleration forces
externally imposed on the entire fluid system and the obvious need to
marginally design the system due to space and weight considerations
necessitate a more complex theory.

The name ''conduit dynamics " has been given to the area of study
involving a closed conduit system, its fluid, and all associated forces.

Only '"token" interest has been generated in this relatively new field



to date as evidenced by the published literature. However, recent
articles indicate that interest is growing among systems engineering
people who possess an appreciation for the analysis of high performance
systems.

This project has been concerned with the development of applicable
theory and techniques for predicting transient flow behavior in single
phase fluid systems. In addition, the properties and flow character-
istics of cryogenic fluids which influence analytical simulation studies
are being investigated. The research associated with this project has
been relegated to two research teams. The first team is charged with
the development of appropriate theory and techniques for establishing
a conduit model. The second team has undertaken the investigation of
cryogenic properties and flow characteristics. This report purports

the project activities and efforts for the first year of the study.

Scope of Work

The original scope of work for this study may be broken down

into four phases as follows:

A, Complete a comprehensive review of past literature.

B. Develop a mathematical model which describes the transients
in fluid conduits and shows the effects of fluid inertance,
fluid capacitance, and fluid resistance. Develop an analog
model based on the mathematical model which will simulate
the fluid transients in a cryogenic closed conduit.

C. Conduct an experimental study to verify the conduit simu-
lation models. Make necessary modifications in the models

to achieve appropriate agreement with laboratory data.




D. Study the effects of components, derive their associated
transfer functions, and add this input to paragraph C

above to obtain the effects of added components.

Summary of Accomplishments

The work which has been done to date toward the successful
completion of the work objective as indicated in the scope may
be summarized as follows:

A. An exhaustive survey of previous investigations has been
completed for both the single-phase and two-phase areas
of the study.

B. A detailed transfer function model for a viscous, two-
dimensional, single-phase conduit has been derived and
appears to be capable of extension to cover preliminary
two-phase and cavitation studies. This model has been
experimentally verified for the single-phase case.

C. A conduit model showing the effects of body forces and
system vibration was derived.

D. An investigation of the nonlinear effects associated with
conduit dynamics has been made using a linearized second-
order equation of motion.

E. The design of a hydrodynamic tunnel capable of handling
liquid nitrogen has been completed and construction is
underway.

F. A theoretical investigation of the onset of cavitation
has been started; however, the necessary boundary conditions

must be determined experimentally,



G.

A bubble observation chamber, suitable for studies with
liquid nitrogen, has been designed and constructed.
An experimental investigation of the effect of an orifice

in a fluid conduit has been carried out.

The following chapters of this report give a detailed account of

this work.

Recommendations for Future Investigations

Although the work which will be accomplished in this first year

of study represents a significant contribution in the field of conduit

dynamics, we feel that, due to the experience and knowledge gained

during this period, we will be at a stage where we can undertake more

specific and practical problems of interest to NASA. Areas which

it is felt deserve further study and will be rewarding to the space

program include:

A.

Study the formation and behavior of bubbles in conduit
systems subject to vibrationms.

Extend the concepts of the present conduit models to
incorporate turbulence, bubbles and cavitation effects.
Continue the analytical and experimental investigation
of the significance of the nonlinear effects in conduits
and their components.

Investigate the effects of transient pressures on the
cavitation properties of liquids in a static state. A
comparison should be made with the results obtained from
the hydrodynamic tunnel for the same liquid flowing through

the same pressure transients.
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CHAPTER 1II
Review of the Literature for Single-Phase
Conduit Systems
Definition of the Problem

The problems associated with the design or analysis of fluid
systems are challenging, particularly for systems involving unsteady
flows., A typical system may contain many components such as pumps,
valves, actuators, reservoirs, motors, etc., generally connected
together in some manner by fluid lines. A complete analysis of
such a system must involve not only the components but also the
fluid lines. This is particularly true for unsteady conditions
whare the cffccts of che fluid lines have in some cases caused
otherwise well-designed systems to be inoperable.

In general, the area of study associated with the flow of fluids
through conduits is called '"Conduit Dynamics.' A rigorous application
of Conduit Dynamics to the study of a fluid line involves a complete
study of the fluid itself plus a study of the effect which the pipe
or conduit has upon the fluid. For example, in making computations
involving the effect of fluid compressibility we may make large
errors if we do not include the compressibility effect due to the
elasticity of the pipe walls. Conduit Dynamics includes fluid studies
which are associated with the two areas known as 'water hammer'" and

"surge''.
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The complete description of a fluid line in which the effects
of compressibility, fluid inertia, viscosity, and heat transfer are
important involves the simultaneous solution of the following equations:

1) Equations of Motion (Navier-Stokes equations)

2) Continuity equation

3) Energy equation

4) Equation of state of fluid

5) Dynamical equation of motion of tube or conduit
Also, application of the boundary and initial conditions is necessary
in order that answers may be arrived at for particular cases of
interest. An exact description, i.e., an exact solution of the govern-
ing equations, is nearly impossible. However, by means of various
simplifying assumptions, it is possible to arrive at solutions which
yield rather good quantitative descriptions of the system being
analyzed. In many cases these simplifying assumptions are question-
able. By means of the discussions which follow, an effort will be made
to present, in an organized manner, the work which has been accomplished
by previous investigators. Indications will be made, where possible,

of the application and limitation of the ideas.

Lumped and Distributed Systems

The physical properties of all real systems are distributed with
respect to time and space. The extent or influence of this distributive
effect varies greatly, depending on the particular system being studied.
For the case of the fluid systems which will concern us, this distri-
butive effect may or may not need be considered. 1In general, those

physical systems which are described by relations involving distributed
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2.3

parameters are called distributed parameter systems. The dynamical
equations for distributed systems are generally partial differential
equations. Those systems which do not involve distributed parameters
are called lumped parameter systems. The dynamical equations for lumped
systems are generally ordinary differential equations. If we take a
distributed parameter system, average the effect of the distributed
parameter(s), and concentrate this average at some point, then we
say that we have "lumped" the system. The validity of approximating
a distributed system by a lumped system or systems depends upon the
operating conditions of the system and also upon the manner in which
the lumping is performed.

The distributed effects of fluid systems which will concern us
are those due to compressibility, inertia, and resistance. In the

literature, those studies which involve compressibility and inertia

", A e n LT Tr F I | R H i L e U B . A
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inertia effects are called '"surge studies."

Linear Distributed Models - No Conduit Wall Effects

For the purposes of this discussion, consider a fluid conduit
system to be describable in terms of a cylindrical coordinate system
as shown in Figure 2.1. Unless otherwise indicated we will assume
laminar, axisymmetric flow. Also, for brevity, we will use vector
notation where applicable (a summary of vector notation is given in
Appendix B or see reference 1).

As indicated in the introduction, a complete description of the

system involves solving the following equations.



%
A) The Navier-Stokes Equations [2, 3]

Assuming a fluid of constant viscosity, we may write

- P E V(T V(v 2.1)

=

B) The Continuity Equation
30 | 7. ()=
v (pvl=0 (2.2)
ST

C) The Energy Equation

Assuming the fluid to have constant specific heat and viscosity,

we have
pPT DP =
P3r S - o = ME-V-R (2.3)

where § 1is the dissipation function [2] and i is the vector heat
flow rate.

D) Equation of State of Fluid

The equation of state of a fluid is the functional relationship
between its pressure, density and temperature (i.e., its state vari-

ables). For a liquid it is given by
dp=X% Cig (2.4)

where ¥ is the bulk modulus of elasticity of the fluid.

In this chapter we will bé mainly concerned with those conduit
models which are describable in terms of first-order or linearized
governing equations. When this is done, the nonlinear convective
inertia terms which appear in the substantial derivation D/Dt are

removed. Also, where  appears alone it is replaced by an average

*v
Brackets denote references at end of report.

8
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density p, . We will also neglect temperature effects unless it
is otherwise specified. Under these stipulations the governing

relations become,

> g_:-:_" - VP Hl %V(Voi") -V (Ux 77)} (2.5)

for the first-order equation of motion,
R o vTa0
2tV U= (2.6)

for the continuity equation, and

dp=X éé (2.7

for the liquid equation of state. The quantities v and p now

represent small perturbations from some steady condition. We must

~also restrict ourselves to perturbations about a mean or net velocity,

Vo << ¢gq. These restrictions are important to remember. In Section

2.7 we will discuss briefly the effect of violation of these assumptions.

5 e

Figure 2.1 Coordinate System




Frictionless Model

The starting point for studies of conduit dynamics is the

one-dimensional wave equation which was first derived by d'Alembert

in about 1750 in connection with his studies of vibrating strings.
Joukowsky [4] and Allievi [5] are generally credited as first
associating wave phenomena with water hammer problems in order
that studies of the wave equation could be used in explaining
pressure transients in conduits. The wave equation for a
compressible liquid is derivable from Bquations (2.5), (2.6),

and (2.7) if one assumes that the viscous effects are negligible.

The result is
U v? v,
at? =L

where cy 1is the isentropic speed of sound in the fluid and is

NES

v represents the fluid disturbance velocity in the direction of

given, for a fluid, by

propagation. Solutions to Equation (2.8) predict sinusoidal
pressure and velocity disturbances propagating unattenuated with
respect to space and time with a velocity cgy. If Equation (2.8)
is solved for the case of a suddenly closed valve on one end of

a line with a constant pressure reservoir at the other end, Figure

2.2a, then the disturbance pressure will be of the form

Ae) = ?o'com(%) (2n1 1)‘°“”{w° (2n-1) %

ns)

10

(2.8)

2.9)

(2.10)
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(b) Square Wave Pressure Variation at Suddenly Closed Valve
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(c) Pressure History of Waves in Conduit for One Half Period

Figure 2.2 Suddenly Closed Valve - Classical Water Hammer Problem
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where v, 1s the initial mean velocity in the pipe before flow
stoppage. Equation (2.10) is the mathematical expression for a
square wave with period (4L/cy), see figure 2.2b. Now examine
the physical chain of events which result in this pressure square
wave. At the instant of valve closure the fluid at z =1L 1is
instantly stopped and the kinetic energy of the fluid is converted
instantaneously (no friction) to potential energy (pressure). This
positive pressure wave propagates toward z = 0 with velocity cg
and reflects back to 2z =L with zero pressure, see Figure 2.2c.
The pressure wave then becomes negative and propagates again to
z = 0 where it reflects with zero pressure back again to z =L,
thus completing one cycle of the pressure wave.

It is evident from this discussion that the conduit of Figure
2.2 has a characteristic 'natural” frequency of oscillation fc = c,/4L.
A critical analysis of Equation (2.10), however, shows that this
particular disturbance actually consists of an infinite number of
discrete characteristic frequencies fc = c°(2n-1)/4L. In general,
we may say that a conduit will have an infinite number of characteristic
frequencies, whose values depend not only upon ¢, and L but also
upon the end conditions for the conduit. When we excite this system
with e;me form of time variant non-sinusoidal disturbance, the system
response will be the sum of the response of each characteristic
frequency. The extent to which a given characteristic frequency
will be "excited” depends on the type of disturbance. In general,
the "sharper' the disturbance, the greater will be the extent to

which the high frequency terms are excited. It is important to

12
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realize that the above results are very idealized and include neither
the effects of friction or of pipe wall elasticity (these topics
will be discussed later on). The results, however, indicate the
upper limit of amplitude for a given disturbance. Extensive
treatments of the application of this simple theory to practical
problems may be found in references [6, 7, 24]. -These applications,
in general, involve a graphical or numerical solution of the wave

equation.

Friction Effects

When researchers [e.g., 12] performed experiments on models
demonstrating water hammer they found considerable discrepancy
between the simple plane wave theory and actual results. They
found that when sudden flow changes were effected, the resulting
pressure transients changed shape with time similar to the diagram

in Figure 2.3.

| N\

Figure 2.3 -Actual Pressure vs. Time Plot for Suddenly Closed Valve

Y
o
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We see that, in the actual case, the sharp corners of the pressure
trace are being ''rounded off" and the amplitude is decaying with time.
This phenomena results from dispersive and dissipative effects which
are a consequence of viscosity, pipe wall effects, etc. 1In general,
they result from friction effects. It is interesting to note that
the greatest dispersion and dissipation occur on the high frequency
terms which are those terms responsible for the sharp corners of the
pressure trace. To account for all dispersive and dissipative effects
would require an exact solution of the governing equations. However,
past researchers have obtained useful results by means of approximate

solutions.

Plane Wave Viscous Model

It was demonstrated by Stokes that plane or unbounded waves
do not satisfy the simple one-dimensional wave equation, but rather,

due to viscosity, must satisfy

3V, Y, 2V
az*+ 37;22‘&-(; (2.11)

.
S
Equation (2.11) may be obtained from Equations (2.5), (2.6), and
(2.7) by assuming one-dimensional effects only. Solutions to Equation

{2.11) may be represented by

;‘:'}/24-4:«){'
V=Vs & (2.12)

where vy 1is a complex constant called the propagation constant or

propagation factor and is given, in general by

V= Yrtie (2.13)
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The quantity Ye ig rhe spatial attenuation factor since the term etV 2
represeuts the spatial decay or attenuation of the wave. The quantity
w/yC is called the phase velocity and is the actual velocity of pro-
pagation cof the disturbance. 1In general, the phase velocity does not
equal Cye The value of +vy for the solution given in Equation (2.9)

is

— Py
- ., w2 (2.14)
CV B TE

y

w represents the angular frequency of the disturbance.

Solutions to Equaticn (2.11) have been obtained by some reseachers
[8) in an effort to account for dispersion and dissipation effects in
water hammer. These sclutions, however, greatly underestimate the
viscous effect because Equation {2.11) accounts for shear only in
the direction of propagation (the z direction). Much greater viscous
effects are acting in the radial direction due to the fact that the
fluid velocity must go to zero at the pipe wall. We must conclude
then that solutions tc Equation ¢{2.11) will not adequately describe

the viscous effects in conduit dynamics.

Linear Resistance Model

The approach that a great number of researchers [6, 7, 9, 10, 11,
12, 13, 14] have used is to modify Equation (2.5) by substituting in
place of the viscosity dependent terms a friction term which is pro-

portional to the velocity. The resulting equation of motion 1is

Qv _ _ 1 QP—R.V.

3t P I (2.15)

15



R, is a resistance or friction coefficient often given by the laminar

flow resistance value, or

=
|
V)
N

Y,2 (2.16)

r, being the pipe radius. When Equation (2.15) is solved simultane-
ously with the continuity equation and the equation of state, we

obtain the same solution as in Equation (2.12) except ’Yﬁ now has the

value
- /Co ;:_a-) i (2.17)

If the solution to Equation (2.15) is obtained for the case of
a suddenly closed valve, the pressure versus time plot at the valve

will look similar to Figure 2.4,

;—A

|/I ] s
|~

Figure 2.4 Pressure for Suddenly Closed Valve from Linear Friction Model

-

Although this linear friction model does not give the exact answer,
especially over a wide frequency range, it has good utility when

experimental values of R, may be determined and when the frequency

range is limited.
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Two-Dimensional Viscous Model-Longitudinal Mode Only

A model reported in the literature [17, 18] which more exactly
describes the first-order viscous eéffects for the longitudinal mode
of vibration only is a result of the solution of the following reduced
form of the equation of motion

b
v __ D v 1
R -- STt v 5 219

The resulting propagation factor is

y ()
) {1- 2 7 (3%) i'/’ (2.19)
¥ Jo (TV3)

where
Qe LW

4l (2.20)
and where J,(grq) and J,(€r,) are, respectively, the first and
zeroth order Bessel functions [19] of the argument ¢gr,. Brown [17]
has obtained the pressure history for the case of a suddenly closed
valve using the solution to Equation (2.18). His results have much
the same general shape as that of the experimental results of other
authors, but the results are inconclusive since no supporting experi-
mental results were included with the theoretical predictions. We
can‘éonclude, however, that Equation (2.18) 1s a better representation
of the true phygical situation than the models previously discussed.
From the stan@péint of frequency response chracteristics as reported
by Oldenberger and Goodson [10], this theory follows very closely
the experimental results. Brown [17] and two other authora_[ls,‘16]

have solved Equation (2.18) for a fluid in which the heat transfer
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may not be neglected, thus it must be solved simultaneously with the

energy, continuity and state equations. This results in a propagation

factor '{ 23, (en)
o ) e T 60
*o 2 Ji (£Y) (2.21)
1= 5y
where now
e?= - &% g
>V (2.22)

and gy 1is the Prandtl number [2] and vy 1is the ratio of specific
heats for the fluid. This model has not been experimentally verified
by researchers so its validity must be regarded, at this time, as

undetermined.

Exact Linear Model

A model based on the exact solution of Equations (2.5), (2.6),
and (2.7) was presented in Interim Report No. 64-1. This model pre-
dicts an infinite number of discrete modes of propagation instead
of only one mode as the previously discussed models predict. In a
given situation, the fundamental or longitudinal mode usually pre-
dominates but there may be some circumstances under which neglecting
the higher modes leads to errors in the analysis. This more elaborate
model needs to be verified experimentally before any definite con-
clusions can be reached. It is interesting to note that the zeroth
mode propagation factor for this model coincides with that given by
Equation (2.19) for the simpler model which has been proven experi-
mentally to give good results in predicting the frequency response

for this mode.
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2.4

Discussions of analytical and experimental investigations of the
higher modes of propagation in connection with inviscid flow or wave
propagation are extensive throughout the acoustics literature [27, 28,
29, etc.]. To the best knowledge of the writer, however, an exact
treatment of these higher modes with respect to viscous propagation
is nonexistent in the literature except for the presentation in

Interim Report No. 64-1 , (see also Chapter VI of this report).

Fluid Transmission Line Concept - Transfer Equations

So far we have been discussing only time domain solutions to
our equations. If we were to begin the exact study of a fluid
system in which .several components were involved, then the time
domain approach would be exceedingly difficult and we would probably
get completely lost in the mathematits; A useful and simple approach
when dealing with the frequency analysis of fluid conduits (or any
fluid component) is that of the fluid transmission line [7, 10, 20].
Consider the fluid line to be representable as shown in Figure 2.5

as a four-terminal system. If we solve the system equations for

Vi Va

" ) 4

T_ 0 | Floed Conduit ET

7’(=X \ )(=X 2

Figure 2.5 Four-Terminal Representation of Fluid Conduit

our conduit in the Laplace transform domain then we obtain a rather

simple set of equations relating the four transformed variables, thus

19




Pz(')\/.—_ I]L’-S) CesSy - S v LAST T — (2.23)
and
_ P <
Tats) = V,(s)cosM/L _é_: SWl’"/L (2.24)

In Equations (2.23) and (2.24), Vl(s), V2(s), Pl(s), and P2(s) represent
the Laplace transform of the respective time functions and s 1is

the Laplace variable. Also,

L=X2-X, (2.25)
and
7 = o, %Y (2.26)
S

ZC is called the characteristic impedance of the conduit. The v
which appears in Equations (2.23), (2.24) and (2.26) is identical
with previous +y's except that here iw = s, the Laplace variable.
The value of +v , of course, depends upon the model. It is important
to note that this form of the transfer equations is the same for all
of the previous models discussed, only the value of v varies. The
transfer equations for the four-terminal representation of Figure 2.5
will change, in general, when there is motion of the pipe wall and
when we include the higher modes of propagation. Note also that

the fluid velocities represented here are average values, that is,
they have been integrated over the cross-section; thus they are only

dependent on time and the axial coordinate.
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The utility of valid transfer equations in the frequency analysis
of a conduit system cannot be over-emphasized. If four-terminal trans-
fer equations can be written for each element of a fluid system, then
the total system performance may be analyzed by combining the equations
into a new set of transfer equations which represent the entire system.
Suppose, for example, that we have t%o components of a fluid system

arranged in series as shown in Figure 2.6.

\/l VZ_ V.S

L g p——r——

e |t Lk 2| te

Figure 2.6 Series Arrangement of Two-Fluid Components

Suppose that the transfer equations for element 1 may be expressed

in the form
R6) = As) Re)+ Bes) Vits) (2.27)

and

Ue) = Cs) Rel+ D6) Vits), (2.28)

Writing Equation (2.28) in matrix form gives

R A B[R

(2.29)

=~
0
o
=
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In a similar manner we may write for element 2,
B A. BallR

= 4 o (2.30)
1’3 C'a. Dl 1/;.

Substitution of (2.29) into (2.30) yields

Fg Az & 14' E P

R (2.31)
‘5 Cq_ Dz Co Dl v|
or, by matrix multiplication
Bl |(AA+BL)  (AB +BD) | [p
= . L4 (2.32)
Bl [(Acat CD2)  (BCa+ ODL) ||y,
We might for convenience write
{% Aa B F%
= ' (2.33)

wWl |G BV
so that, effectively we have combined elements 1 and 2 into a new

element 3. We may represent the new element as shown in Figure 2.7,

PE) R&
V©) 3 _V®

igure 2.7 Combined Series Elements

Methods similar to this have been employed to great advantage in
the analysis of noise transmission in complex fluid systems which
involve series and parallel elements [22]. The matrix theory for
four-terminal elements has been worked out by Pipes {23] for various

types of arrangements of the elements.
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2.5

In general, the matrix method approach is ideally suited to
frequency analysis studies of a conduit system. It allows very complex

systems to be analyzed easily with a digital computer.

Lumped Models

Up to now we have been discussing distributed parameter models
of conduit systems. We found such models to be expressible in terms
of transfer relations which lend themselves well to frequency analysis.
In general, these distributed models are difficult to deal with in the
time domain. This is a major handicap for many technically interesting
problems such as problems involving conduit systems which contain
valves closing or opening arbitrarily with time. In cases such as
this we may want only the time response of the system. In terms of
the distributed parameter models, this means that the transfer relations
for the system of interest must be transformed from the Laplace domain
back into the time domain, or that some numerical or graphical pro-
cedure must be used to solve the system describing equations. The
transformation of the transfer relations is very formidable; on the
other hand, the graphical or numerical procedures are rather simple
ways to analyze a system but lack the degree of generality usually
desired in system analysis. Due to these drawbacks in the application
of the distributed parameter models, lumped parameter approximations
are often used in conduit system analysis. These models also have
drawbacks which much be kept in mind. The major restriction which
must be imposed on the lumped model of a distributed system is that
it is valid only at low frequency. The method has been found to be

valid, in most instances, only if the frequencies involved are not
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greater than about one-eighth of the first critical frequency of the
ne exceplion tu ihis restriction would be a system
which has sufficient damping so that compressibility may be neglected.
Now exémine some typical ways in which conduit systems are lumped;
first, we need to consider the basic lumped elements, i.e., inertance,

capacitance and resistance [7, 20, 25].

Fluid Inertance

Consider the fluid line shown in Figure 2.8. We will assume that
only the pressure and inertia forces are important and that compressi-

bility may be neglected.

A 12
no I, Uz
z=0 Z=L

Figure 2.8 Lumped Model Inertance Element

Writing the equation of motion for this case gives

dv (2.34a)
dt

where v, = v, =v since the flow is incompressible. The quantity

- d
f?"f%-— E%L.E#%—= -lar

pol. represents a fluid inertance. Before proceeding, it should be
noted that Equation (2.34a) is often found in various other forms

in the literature. It may be found also as

P-t= %_L %% - I 48 (2.34b)

where q 1is the flow rate and A 1is the cross-sectional area. For
this case the fluid inertance is poL/A. Another form of Equation
(2.34a) is

PP, = /_(li-é Cﬁ"f = L d.'.:‘_t_" (2.34c)
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where w 1is the weight flow rate. Notice that the inertance, I, is
not the same in each case. Notice also that these equations are valid

only for constant area lines.

Fluid Capacitance

Now consider a fluid line in which only compressibility effects
are important, i.e., inertia or inertance effects and resistance

effects are unimportant. With respect to Figure 2.9, applying the

£ Ir —

Z=0 Z=L

Figure 2.9 Lumped Model Capacitance Element

continuity and state equations we have, since Py =Pp =P

= LI A gp
V-V = xdt‘c"a‘z-'

Again, as was true for Equation (2.34) we could have just as well

(2.35a)

have written Equation (2.35) in terms of @ or w, but the value

of C would also have been different, thus
=% = AL 32.0__._ Cy df (2.35b)
and also

(2.35¢)

Fluid Resistance

Because oi the large number of parameters which may effect the

fluid resistance, it becomes more difficult in this case to write
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a valid theoretical relationship which holds for a wide range of flow
and pressure variaticns, The usual approach, therefore, is to treat
fluid resistance semi-empirically by defining the pressure drop due

to resistance between points 1 and 2 of a lumped resistive element as
'ﬁ"ﬂ: R(V) v (2.36)

P 2

(TR \ \\F%“’N\J

Figure 2.10 Lumped Model Resistive Element

where Vi =Vvg =v and R(v) is an experimentally determined function
of velocity. Of course if the pressure and velocity are steady, then
R(v) 1is well known from information contained in standard fluid
mechanics textbooks. For the case of oscillating flow only (no

net flow), we can get a good value for the resistance coefficient

by considering a low frequency approximation of the two-dimensional

viscous distributed parameter model. This will be shown later in

this section.

Fundamental Lumped Model

If we now combine our three basic elements together, we have the
fundamental representation of a lumped line. If we combine Equations

(2.34a) and (2.36) and consider also Equation (2.35a), then we may

f__ TP

. S, =
V> d \F\?\(}T) L ‘_;>.-4.5;
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write for the fundamental representation

f-= Ivi_{’}_’;—_,_ Rer) Vo (2.37)
t

and

= G AP
U'.’U'z-— C‘U‘a—t--

(2.38)
Now take the Laplace transformation of (2.37) and (2.38), thus
Pes)- RBits) = STy 126) + Riv) Tts) (2.39)
and
Vi) - Vats) = SCy Pies)., (2.40)

Writing these last two equations in our standard transfer form gives,

Resy= P&) §i+s Cr[STr+ Rﬁrﬂg - V) {SI‘H- Rﬁr)z (2.41)

and

Vats) = Vis) - SCr Res) . (2.42)

In Chapter VI we will further discuss these last two relations with
reference to the exact or distributed parameter models.
There are many possible ways of representing a conduit with

lumped elements other than the representation of Figure 2.11.

Equivalent Electrical Circuits

One motivation for using lumped models, other tham simplicity,
is that they readily yield to simulation on an analog computer.

Using a pressure-voltage analogy the electrical equivalent of the
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fundamental lumped model becomes that shown in Figure 2.12.

! TIQ L

J

1

—

Figure 2.12 Electrical Analogy for Fundamental Lumped
Conduit with Friction

of Re, Le and Ce depend upon what is made to be the analog of electrical

current. Table 2.1 shows the analogous quantities for three possible
analogs. Other circuits which are often used in an effort to improve
Electrical | Voltage | Current | Resistance | Inductance | Capacitance
Quantity e i Re Le Ce
Analogous P v R(v) poL L/K
. L

Conduit P q R(v) Po

System A A AL/>{
Quantity P w R(v) L pogAL

PoAg Ag et

Table 2.1 Electrical Analogs

The values

the accuracy of representation are shown in Figure 2.13.

Method for Improving Lumped Model

We stated previously that a lumped model generally is valid only
if the frequencies involved are not greater than about one-eighth of
the first critical frequency of the lumped element. We can conveniently
get around this restriction by using several "lumps" to simulate a

conduit. Suppose, for example, that the highest frequency encountered
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Figure 2.13 Variations of Electrical Analogs

is about ten times too high for valid lumping; then, if we use ten
electrically equivalent circuits in series (after reducing Re, Le and
Ce by a factor of ten) we are able to circumvent the original restriction.

Figure 2.14 shows the electrical analog for an n-segmented lumped model.

Rﬁh& Lem
MWDV ¢ = e s e
A Ce L
- il

Figure 2.14 Analog for n-Segmented Lumped Conduit with Friction

In practice it has been found that this model does lead to greater
accuracy but that the number of segments required becomes very great when
the frequencies involved go beyond about the second critical value. Another

method of lumping, invented to overcome this difficulty, is discussed below.
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Tapered Models

The representation of lossless fluid lines by

model is the subject of a patent by Paynter [26].

n-segmented tapered representation as presented in

in Figure 2.15. The values of the

's

and 3's

value of n and are given in Table 2.2 for values

glLe

a tapered lumped

The analog of an

the patent is shown

is dependent on the

of n wup to 5.

— Y
¢M4Le

-t
et

—m\———o

d)V\LQ
= %h.Ce

Figure 2.15 Tapered Lossless Analog

n- 0 1 2 3 4 5
% | 1.000 .250 142 .099 .075 .061
W .541 .289 .199 .152 122
8 .750 .311 .205 .154 124
¥a .367 .218 .159 .127
% .547 L2044 .168 .131
Vs .295 .182 .137
83 .452 .209 .146
Vs .257 . 160
84 .394 .185
¥s .229

It has been found that this tapered representation gives good results

for any number of critical frequencies and the number of '"lumps' or segments

Table 2.2 Values of §'s and §'s

needed for an accurate representaticn uwp to a given frequency is equal to
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2.6

N +1
c

where Nc is the number of critical frequencies below the desired

cutoff frequency.

Conduit Wall Effects
Thus far in our developments we have been overlooking the effects
which the conduit wall may have upon the fluid dynamics. Depending
upon the operating parameters of the system being analyzed, accounting
for the effects of the wall may be very simply achieved or, on the
other hand, may require an extensive mathematic treatment in order to
get reasonable answers. Fortunately, most problems with which we will
be concerned can be handled with the simple treatment. Problems demanding
a complex analysis usually occur only when dealing with extremely high

operating frequencies.

Simplified Analysis

Korteweg in 1878 showed that wave propagation was dependent upon
both the elasticity of the fluid and of the conduit wall and that the
resultant propagation velocity must be equal to or less than cy It
has been shown (see, for example, Reference 7) that the actual sound

velocity is

e
L= 2 (2.43)

} 1+ XJ/Ee

where E_  is Young's modulus for the tube material and £ is given

t
by
DO/h thin-walled tube
'?‘-—" (2.44)
Dz D_'L
2‘?§£§j§?) thick-walled tube
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In Equation (2.44) D0 represents the conduit outside diameter and
Di represents the inside diameter. All that is required in the
simplified analysis is that we replace SR with the ¢ of Equation

(2.43) in our analysis.

More Exact Analysis

There have been a large number of papers written pertaining to
the effect of conduit wall elasticity on the transmission character-
istics of fluid within the conduit. Basically, conduits may be divided
into two types with regard to the elastic characteristics of their walls:
elastic flexible and elastic stiff. For a conduit with elastic flexible
walls we assume that pressure variations within the conduit can cause
radial deformations which do not cause corresponding axial disturbances
in the conduit wall, i.e., all disturbances in the wall are localized
and cannot propagate axially along the conduit wall. For elastic
stiff walls, on the other hand, disturbances can propagate axially
along the pipe wall. Some of the authors who have made comtributions
on the effects of conduit elasticity are Lamb [27], Jacobi [28], Morgan
[297, Lin and Morgan [30] and Skalak [31]. None of these authors have
treated exactly a viscous fluid in this connection. An exact treatment
of both flexible and stiff walls for a viscous fluid is outlined in
Chapter VI.

In general, the relations expressing the propagaticn velocity
variation with frequency have trends as shown sketched in Figure 2.16.
Notice that only one mode transmits for all frequencies for the case
of an elastic flexible wall, whereas two modes transmit at all frequencies

for an elastic stiff wall. Note also that the limiting value for small
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‘ frequency in both cases approaches the same value, c/co. This is the
same value as predicted by the simpiified analysis from Equation (Z.43).
We see then that the simplified analysis is exact for low frequencies

for the zeroth mode (nonviscous fluid only).

2.7 Nonlinear Effects
Thus far in our discussion we have been limited to problems
involving small perturbations about some steady flow condition where
the steady velocity component is much less than e The reason for
imposing these restrictions stems from the fact that, in the previous
developments, the nonlinear terms of the equations of motion were

neglected. Consider again the exact form of the Navier-Stokes

equations (for a constant viscosity fluid) given by Equation (21.),

p %_z' =~ VP Hu %V(V-ﬁ‘)-— Vx (Vm’i‘g. (2.1)

The difficult nonlinear terms are contained in the substantial
derivative, Dv/Dt. For the velocity component in the 2z direction,

we have (assuming axisymmetric flow),

Dve oV Ve o2Vz
vl Al .69

There seem to be two main conditions, with respect to problems of
conduit dynamics, under which we must account to some degree for
the nonlinear terms of the equations of motion. These conditions
are:

1) Case where there is a large steady flow component but

small unsteady components.
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2) Case where the unsteady terms are large and the steady flow
terms may or may not be large.

We will now discuss each case in more detail.

Case 1

We assume in this case that we may write for the velocity
Uz= Vzo + Vg (2.46)

where Yz, is the steady flow term, i.e. independent of time, and
v, is the time variant perturbation or disturbance velocity. We
1
assume also that |v, | <<| v, |. Based upon these assumptions
Zl Zo

we may approximate Equation (2.45) by (after neglecting the small

order terms)

Dv—a —~ QE‘ .D_ av‘é'

— = + 2o 52

Dt It (2.47)
Since V2o will be a known quantity as a result of solving the steady-

state hydrodynamical equations, this means Equation (2.47) is linear;
thus, we have linearized the substantial derivative for this case.
Regetz [32] utilized a linearization such as this to enable an
analytical description of the response characteristics of hydraulic
lines with a net flow. Regetz' analytical work is for nonviscous flow.
Considerable work has been done along these same lines by one

of the project members and is reported in Chapter VI.

Case 2

If the unsteady perturbations are of sufficiently large magnitude,
then a linearization procedure will not work and one has to contend

with the nonlinear equations. This area of study needs much work before
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8

generally applicable methods of solution are available. In many cases
the method of characteristics [33] may be used if we do not have to

contend with viscosity.

Component Effects

There are many types of components commonly associated with fluid
conduits which affect the transmission characteristics of the system.
The most basic of these is the orifice and is the one to which we will
devote our attention.

With respect to conduit dynamics applications, only a small amount
of literature is available that specifically concerns the nonsteady flow
of a liquid through a circular orifice. The problem has not been one of
general interest since highly powered and slowly responding systems can,
in general, be analyzed with the aid of the steady state orifice equation
modified by appropriate correction factors. More interest is being shown
in the subject as systems become more complex.

In the field of acoustics, however, the problem of nonsteady flow
through an orifice is fundamental. It will be shown that some of the
concepts and expressions from this field are applicable to hydraulic
problems. Indeed, the bulk of the literature surveyed is from acoustic
sources.

A treatment of the unsteady flow of a liquid through an orifice
in a conduit is due to Goodson [34]. 1In this method the describing
partial differential equations are reduced by integration to a linear
ordinary differential equation in time relating flow, pressure drop

and area of the orifice. Now follow his development.
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We will assume the following conditions to hold:
(1) The conduit length is much greater than its diameter so that
wave effects associated with the orifice may be neglected.
(2) Tube wall effects are negligible in the vicinity of the orifice.
(3) Viscous effects are negligible.
(4) Density changes are small.
If we average the equation of motion, Equation (2.1), across the cross-

section, considering the above conditions, we then may write

5%, aleUnl AP _,
o+ a2 Qo 2 (2.48)

for the one-dimensional equation of motion, and

A Q

B (2.49)
for the continuity relation. Here, q = q(z,t) 1is the flow rate;
v, = vm(z,t) is the average axial velocity over the cross-section; and

A = A(z,t) 1is the orifice area. We now define an effective length Lo

of the orifice, as shown in Figure 2.17, to account for the effect of
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Figure 2.17 Flow Patterns Near Orifice
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the orifice on the flow patterns in the vicinity of the orifice. Goodson

has simullaneously integrated kquation (2.48) and (2.49) from O to Ly
which results in an ordinary differential equation relating flow rate and
pressure drop in terms of a time variant area for the case of a compressible
liquid. For many purposes the compressibility effects may be neglected

which much simplifies the resulting differential equation to

b, cj%(°)+ b2 )2 = é{}‘i‘? (2.50)

where q(0) 1is the flow rate at z = 0 and pAp(t) 1is the pressure drop

across the orifice. Also,

Jodz

b= | 2= 2.51)
'T ) TAe) (
and
b, = j"dz 2 (4 )
At) 32 \Ait) (2.52)

We can express Equation (2.50) in a more convenient form by letting
q =gy t+q, where gy 1is a steady flow term and q, 1is the perturbed

flow. We then have, assuming ¢, 1is small,
b| ci’_%‘_' + 2 bz %ﬂp, = A*P‘(J,') (2.53)

where p =p, +p, and py 1is the steady pressure and p, 1is the
perturbed pressure. No experimental evidence is presented by Goodson
specifically verifying this orifice model. This model is interesting
from the standpoint of accounting for the nonlinear characteristics of
orifices and also in allowing the orifice area to be variable in time.
Notice that, in view of the discussion of Section 2.5, Equation

(2.53) demonstrates the pressure drop to be composed of an inertance
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term plus a resistive term; thus we may rewrite Equation (2.53) in

the form

I% %%' + R(@) %, = A‘)Q(U.

(2.54)

Iq is the inertance for the orifice and R(q) 1is the resistance.
Thurston and Martin [35] investigated the acoustic impedance of
a small orifice in a thin plate for liquids driven by a high frequency,

low amplitude driver. The results are shown in Figure 2.18.
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Figure 2.18 1Inertance and Resistance Versus Volume Flow
for Oscillating Flow Through Orifice

The region in which resistant and impedance are not a function of
volume flow is defined as the linear region, and where they are not
independent of volume flow it is called the nonlinear region. These
investigators reported distortions in the sinusoidal form of the differ-

ential pressure across the orifice as the nonlinear region was penetrated.
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The end correction factor for an orifice is defined as the length
which must be added to the real length of the orifice in order to render
correct the calculation of resistance and inertance using the exact so-
lution for the per-unit-length values for an incompressible fluid being
driven periodically in a tube of infinite length. The concept is due to

Rayleigh [36] who arrives at the range of end correction values

T i< §S< 8d
Y T

from total work calculations. Some investigators select values from
this range while others modify it. Goodson incorporates the end correction
factor in his choice of zo. Thurston and Martin relate resistance and

inertance to end correction factors by the expressions,
_ (R e,
R= <—R—° —)&?_Z-' (A+ Sr) (2.55)

and

T- <L) _;i%_ (£ 8

I (2.56)

where, R/R0 and I/IO are functions of A(pw/u)%.

Thurston, Hargrove, and Cook [37] present a more comprehensive study
of low amplitude flows through small orifices by the use of more advanced
instrumentation.

If the instantaneous volume flow through an orifice is
%= %o Swwt

the total pressure differential across the orifice is a function of the

odd frequency harmonics and may be expressed as
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aP= D hswlwtid) s nely s,
nw

where
P sinlwdid) e Ta,weeswt + K, ceswt

Experimental data is presented in terms of these parameters.
The effect of adding a steady flow component to the sinusoidal

volume flow input can be described by

L= Ls+ G, Sivwt

Since the differential pressure is a function of all frequency harmonics,

AP= AL+ A= E‘R Sduéww‘t+¢n),v\=l,2,3,
= |

where, Apa is the increase in the steady flow pressure when the sinus-
oidal flow is added, and Apo is the pressure differential resulting
fro .
moq
Thurston et. al. define the differential pressure across the orifice

AP = -PL + 'pNL.

where,

pL = Linear pressure contributions, and

PyL= Nonlinear pressure contributions.

In the linear region Thurston's statement of the pressure flow equation

is,

ZSfL = Rcb + T Eg%
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where, R and I are approximately constant for small volume flow rates

2d
31

as defined by Eyuaitiouns (2.54) and (Z.55) and applying § = At
higher volume flow rates the nonlinear pressure drop is generated by

the convective acceleration of the fluid entering the orifice. The energy
associated with this component of pressure drop is not recovered down-

stream of the orifice since it goes into the formation of vorticies and

maintains circulations. Hence,

'Pm_ = 1 G—-ﬁ—vl"z

Zz

where,

G~1£M1== 2)“-‘.

The authors also present semi-empirical data to show the dependence of
the pressure flow equation (8.e., the dependence of ¢ and §) on the
parameters, orifice diameter, velocity, frequency, orifice length, and
kinematic viscosity. The equation is most directly influenced by parti-
cle velocity.

Wood [38] states that the zero frequency limit of resistance for
periodic flow should be equal to the resistance for steady-state flow
for the linear region of operation. He presents steady flow data for
orifices which show that at low values of volume flow, resistance is
independent of volume flow. Appropriate values of periodic flow fall
on the curves as shown in Figure 2.19.

The value of Reynolds number at which the nonlinear region begins
is, in general, very close to ten. It is also significant to note that
the values for periodic flow do not seem to correspond to this transition
point. Wood points out that for a knife edged orifice the entire effect-

ive length of the orifice is due to the end correction.
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Figure 2.19 Resistance/Viscosity Versus Reynolds Number

An early development of a formula for the nonlinear acoustic re-
sistance of an orifice is due to Sivian [39]. His expression is based
on the consideration of the kinetic energy of the fluid in the orifice
for the steady flow of air. The plot of resistance versus particle
velocity was verified experimentally by Thurston et.al. [37].

Papers by Thurston and Wood [40] and Ingard and Labate [41] are
of general interest because the present evidence that for small sinus-
oidal fluid motions the relationship between volume flow and differential
pressure can be characterized by constant values of resistance and inert-
ance. These references lend further credence to the concept of the linear
region.

The problem of the description of an orifice of appreciable length
has been regarded as difficult by some investigators [37]. Karal [42]

considers the orifice to be a circular constriction between two segments
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of a circular conduit. He analytically derives a correction which can
be added to the analogous acoustical inductance of a tube of circular
cross section and interpreted physically as an increase in the effective
length of the tube.

Bolt, Labate, and Ingard [43] empirically measured a correction
factor and a theoretically derived term which includes tube wall effects.
Thurston and Wood [407] empirically determined an end correction factor
and separated the impedance of the orifice from that of the tube.

The classic expressions from which many of the above references
have been derived are due to Crandall [447]. Bergeron [24] presents a
practical graphical treatment for unsteady flow through an orifice and
for the case in which orifice area is a function of time; however, his
approach requires complete time domain characteristics and is not appli-

cable to the problem considered herein.
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CHAPTER III

Discussion of Two-Phase Flow

Introduction

The term 'two-phase flow'' covers a large field. In general,
two-phase flow refers to the fluid flow of concurrent and counter-
current mixtures of any two of the three phases - gas, liquid, and
solid. The field of two-phase flow can be further subdivided into
two-component and one-component flow. One-component flow is com-
plicated by mass exchange between phases.

The flows of gas-liquid systems have external and internal
bounding surfaces. The external bounding surfaces are usually
considered to be fixed with respect to time; however, the internal
interfaces between the flowing media are generally variable in space
and time. Interactions of forces and thermal interactions (for
nonisothermal flows) arise at these interfaces. These interactions
fundamentally affect the changes in the fields of flow velocities,
pressures, temperatures, and thermal and diffusion fluxes trans-
ferring from one point of space to another point separated from
the first by an interface.

The existence of twice as many flow and property variables
indicates that even the simplest physical model will produce com-
plex relationships. The simplest of models has not been adequate.

However, with the aid of high speed digital computers and recent
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2

developments in numerical techniques, the solution of a two-phase
problem dves not seem impossible,

This chapter will be limited to a discussion of one component,
liquid-vapor, two-phase flow. This is the type of flow which would
normally be of concern in the flow of a cryogenic fluid through

conduits.

Discussion of Two-Phase Single-Component Flow

The amount of material published on the subject of two-phase
flow has increased tremendously over the past decade. According
to Reference [47], over 400 publications on two-phase gas-liquid
flow phenomena appeared during the year 1963. These publications
do not include the subjects of atomization, cavitation, and con-
densation. With such a large number of publications appearing
each year on this subject, it is difficult to thoroughly review
all of the material. Several recent documents have attempted to
compile a list of important publications on the subject of two-
phase flow, References [48], [49], [50], [51]. It has been said
that it may soon be necessary to have a bibliography on two-phase
flow bibliographics.

Basically, the analytical treatment of two-phase flow is no
different from that of single-phase flow. The fundamental concepts
of conservation of mass, conservation of momentum, and the first and
second laws of thermodynamics hold for two-phase flow as they do for
single-phase flow. These basic laws may be expressed in differential
form leading to the differential equations of conservation of mass,

conservation of momentum and conservation of energy. A difficulty
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arises in the solution of these equations however since the differ-
ential equations must be written for each phase and solved simul-
taneously. The difficulty is in attempting to write the necessary
boundary and initial conditions for these equations. The complexities
involved in such an approach have limited the usefulness of this method.
A number of simplifying assumptions have been put forward in the liter-
ature to permit some accomplishments in predicting two-phase flow
behavior.

Perhaps the most common assumption that has been made is the
recognition of distinct flow patterns that exist in two-phase flow.
A study of these individual flow patterns or flow regimes has allowed
some simplifications to be made in the analysis of each regime. There
is some disagreement in the description of the various flow regimes.
However, most attempts at describing the flow patterns begin with dis-
tinguishing the flow as either horizontal or vertical. In horizontal
flow the flow patterns normally described in the literature include
spray or mist flow, annular flow, slug flow, wavey flow, stratified
flow, plug flow, and bubble flow. (The flow patterns are listed in
order of decreasing gas or vapor to liquid flow rate). In vertical
flow the patterns are usually described as mist flow, spray-annular
flow, annular flow, slug, churn, or plug flow and bubble or froth
flow. A number of flow regime maps have been given in the literature
for a prediction of the conditions under which the various flow regimes
exist. Several of these flow regime maps are given in Reference [47].

Since the area of study involved in this contract include situ-

ations where only a small amount of vapor formation will be permitted,
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the bubble or froth flow regime was considered to be the most important
regime for intense study. This placed a limit upon the amount of liter-
ature which had to be carefully reviewed and permitted a narrowing down
of the techniques of solution of the two-phase problem. Bubble or froth
flow lends itself to certain mathematical treatment not useful in many
of the other two-phase flow regimes. The assumptions of isotropic and
homogeneous behavior are fairly realistic ones for the bubble flow
regime.

The most important information needed for any bubble flow study
is that on the behavior of the individual bubbles. An adequate
description of bubble formation and growth is needed in order to
complete the description of the behavior of two-phase flow involving
the bubble or froth flow regime. Bubble formation and bubble dynamics
has long been of interest to persons studying the phenomena of boiling
heat transfer. Much of the current literature being studied and utilized
has come from this field.

Another important fact that has been realized during the course
of the investigation is that the presence of the bubbles in the liquid
has a very outstanding effect on the velocity of sound. At mass
ratios of vapor to liquid which exist in the bubble flow regime, the
effect on the sonic velocity is considerable. This can be seen in
Figure 3.1 and Figure 3.2 taken from Reference [52]. The speed of
sound has been shown in Interim Report 64-1 to be an important para-
meter in certain single-phase flow problems. It would be expected
that similar effects would carry over into the two-phase flow problems.

Ability to estimate the sonic velocity of various mixtures of vapor

48




and liquid must be acquired before any great degree of success can
be accomplished in this area.

The prediction of pressure drop in steady two-phase flow is not
too difficult using rather well-established methods, first developed
in Reference [53]. The transient two-phase flow problem, however,
has been given only a minimum amount of study. A very recent survey
on the problem of flow oscillations in two-phase systems is given in
Reference [54]. It is felt that some of this material will be useful

in the continuing study of transient two-phase systems.

49



o p,PSIA" y
ul '°°°Pszos dos______ 10,1000 Za 2
N “3000==695 ' :
C 2000635 3100 i\
Q: 100 1000—545 \ 1 hrd
] 30001.. 3
=1 =3 IO e}
5 100—327 i &
10 3 W
b 4 o
> 10 . =11 >
- 102 1 5
g i o
S - |/ ' 1. @
t; -10.} >
A2 4 lJlill 1 _q llllul 24 AAlllll A A AJAI.‘J | l . ll'lJ

O.i
00001 000

00I Ol d

QUALITY OF MIXTURE,X, LBy VAPOR/LBy MIXTURE

Figure 3.1 Velocity of

Sound in Steam-Water Mixtures as a

Function of Mixture Quality

g m
{f: \ p° 8.0 PSIA -
: . " . T+ 830.0°R
05; .‘:"° Moo MTHO\  \Hi0-AR LIOUID COMPRESSIBITY » .3 - 108 PSIA™! _
3
§ z /
g‘E 5799 1279 60i| NUMBERS INDICATE DENSITY RATIO ]
é FOR MIXTURE p, /pq
i -
b § § NS . -
[ 10°¢ 10°7 0¥ 0 07 10°? 02 w0 109 "y
MASS RATIO, ,LBM GAS /LBM LIQUID

Figure 3.2 Ratio of Adiabatic Sonic Velocity in Mixture to Sonic
Velocity in Gas Phase Versus the Ratio of Mass of Gas
to Mass of Liquid for Several Gas-Liquid Combinations

50




CHAPTER 1V
Review of the Literature on the Formation of Two-Phase
Flow As Caused by Pressure Drop (Cavitation)

Introduction

Cavitation is the formation and subsequent collapse of cavi-
ties in a liquid when the local static pressure at some point de-
creases to or below the vapor pressure and then increases as the
fluid progresses downstream. This can easily occur when a fluid,
near its saturation pressure, is flowing through conduits which
are equipped with components. Whenever cavitation occurs the
complexity of the flow problem is increased several times because
of the formation of two-phase flow. Two-phase flow is often un-
desirable not only because of the increased complexity of the
flow problem but also because of the unsteadiness often caused
by its formation. Therefore, before a complete analysis of two-
phase single component flow through conduits can be attempted, we
must be able to predict the conditions at which two-phase flow
starts and the conditions under which these cavities will collapse.

The literature on cavitation has grown to great proportions
since studies began in the late nineteeenth century. This is due
to the large number of variables involved and to the wide range
of the aspects of cavitation any one of which may happen to be

of prime interest to investigators in different fields. The
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literature reviewed on cavitation will be directed toward vaporous
cavitation as might be expected to occur in fluids flowing through
conduits.

In order to clearly bring out the problem to be discussed it
is necessary to distinguish between two broad types of cavitation.
Vaporous cavitation is the sudden expansion of a vapor bubble due
to vaporization of the liquid at the bubble wall whereas gaseous
cavitation is the relatively slow expansion of a gas bubble due
to diffusion. Strasberg [55] showed that the critical pressure
needed for vaporous cavitation would be equal to or less than the
vapor pressure whereas gaseous cavitation could occur at pressures
above the vapor pressure.

Vaporous Cavitation, a phenomenon caused by a decrease in
the stream pressure, may occur as a result of any one or combination
of: (1) friction in thf conduit, (2) decreasing the flow area, (3)
centrifugal effects (flow in bends), (4) vibration and etc. However,
pressure alone does not specify the conditions under which a flowing
fluid will cavitate. It might be said that pressures below the
vapor pressure is a necessary condition for vaporous cavitation;

however, this is not sufficient because of other variables.

Variables Affecting Cavitation
The variables which affect the onset of cavitation may be
divided into four major groups. These groups together with the

individual group variables are:
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4,3

I. ‘Fluid Properties ITI. Foreign Variables

1. Vapor pressure 1. Dissolved gases
2. Surface tension 2. Undissolved gases
3. Wettability of liquid 3. Impurities (solids,
4, Viscosity dissolved solids,
5. Thermal conductivity etc.)
6. Mass diffusion coefficient
7. Pressure

ITI. Conduit Variables IV. Dynamic Variables

1. Surface roughness
2, Material of conduit

. Turbulence level
‘Pressure distribution
Velocity

. Vibration

PWN

Because of the large number of varibles involved, the efforts to find
similarity or scaling laws encompassing all of these variables has not
been successful,
The problem of determining the conditions under which a fluid
will cavitate is not impossible because of the relatively minor role
cee a3 L. 3.2 .

_Ff 2L e 2 Y mm =V oo a PO DG £oaee W m o
mos8t Of Thicse variavics P4Q) QLU wut GUluialiQne s o aCw
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pPressure is the most important single variable because it gives an
indication of the pressure necessary to cause cavitation. -Several
investigators have considered the nuclei present in the fluid and
conduit as an important variable. The role of the nuclei in producing

cavitation will be discussed in a following section.

Incipient and Desinent Cavitation
Incipient cavitation is defined as that phenomena which occurs

when the stream pressure progresses from a condition of no cavitation

to one supporting cavitation. It marks the onset of cavitation.

-Desinent cavitation, on the other hand, identifies the condition
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when the stream passes from a condition supporting cavitation to one
wherein there is no cavitation. It defines the cessation of cavitation.
Many investigators in the past called both the beginning and the
cessation "incipient" cavitation. Holl [56] in 1960 named these
two different occurrences of cavitation.

For incipient cavitation there will correspond a particular
value of p called the "inception pressure’ Py whereas for desinent
cavitation there is the '"'desinence presure’ Py- From these definitions
there follows the incipient-cavitation number Kio and desinent-

cavitation number Kdo defined by

fio- R (4.1)

Lo “ie,%z

and

b
K4, = —;;Wr . (4.2)

The subscript "o” designates a reference state which is usually
taken upstream of the minimum pressure section.

The experimental investigation by Lehman and Young [57] and
Kermeen [58] indicate that the desinence pressure, Py> is greater
. than or equal to the inception pressure, P, The pressure difference
Py - Py 1s often referred to as the "cavitation hysteresis.'" Thus,

for the same vapor pressure, we can write the following relation

between Equations (4.1) and (4.2),

Kdo aKio ) (4.3)
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For a given flow condition Kdo appears to be the upper limit for

Kio. Holl [56] pointed out that investigators, in the past, called
desinent cavitation as incipient cavitation because of its repeatable
nature. However, in some cases, there is no difference between incipient

and desinent cavitation except in the definitions.

The Inception of Cavitation
A. Nuclei Theory for Cavitation Inception

It is now the generally accepted view that the inception
of cavitation in ordinary liquids is associated with the growth of
nuclei containing vapor, undissolved gas, or both, which are present
either within the liquid or in crevices on bounding walls. On the
basis of physical arguments made by Eisenberg [59], it is unlikely
that completely dissolved gases can play a dominant role in inception,
although in certain cases such dissolved gases may become important
during the inception process. The work of Harvey, McElroy and White-
ley [60] is of particular importantce in this connection, having
demonstrated that water, saturated with air, when "denucleated” by
prior application of large pressures exhibited very high fracture
strength. Thus, the presence of such nuclei is taken to account
for cavitation onset at pressures of the order of vapor pressure.

Cavitation inception is a dynamic phenomenon; however, the

basic principles can be revealed by a static analysis. For static
equilibrium the following equation, for a spherical bubble, must be

satisfied:

Refo =P+ 25 (4.4)



For a constant weight of a perfect gas at constant temperature pg =

—%fb, where C, is proportional to the number of molecules or weight
of the gas and R refers to the radius of the sphere. Hence, Equation
(4.4) becomes
C 240 4.5
p-fR= by - 20, (4.5)
R R
The minimum value of p - P, = p* occurs at a radius

* 3(3 %Z
R=R = 7;;)

or

(P‘ Pv)mm s- 'g%; - (4.6)

In this relation the negative sign indicates that the critical fluid
pressure is actually below the vapor pressure. 1f the pressure is

decreased slightly from the condition of (p - pv) = p* at R = R¥,

min
the bubble becomes unstable and tends to grow without bound. At
pressures greater than the critical pressure, the bubble is stable
and assumes an equilibrium radius satisfying Equation (4.4). The
relation between p - P, and diameter for different values of C,
and assuming a surface tension value of 0.005 lbs. per ft. for 68 F
water are shown in Figure 4.1. The corresponding relation between
pressure and critical diameter is shown in Figure 4.2,

It may be observed from Equation (4.6) that the critical radius
for a bubble containing only vapor (01-0) is zero and consequently

the fluid pressure must be infinitely negative in order to cavitate

such a bubble. This requirement for infinite pressure to cause

56




! !
2.2 B WATER -
o TeestF
20 A _,,_J o-0005—t |
SOURCE: REF. 61
1.8} R - R
1
F_:J 14 —1— G * 1.33x 107"
(=4 /
= -
L. 1
o ~8
- —G,* 0.75 x 10
W
W
= T
> ! c . __ 20
1 \\ PR R TR
<
" 0.4
Q002 \\\\
4 NN
LRSS
-0.2 ==
-04
T T ag
\A (® P")um | 3R¥
-06
= —te
R 20
-0t

L
(] > 10 15 20 25 30 35 40 45 80
BUBBLE DIAMETER, D, (INCHES x 10°)

Figure 4.1 Pressure as a Function Bubble Size

Tse8%F
o = 0.005 —1-

-10.0 ft
-8_0q‘\ SOURCE: REF. 7|
A\,

-100
- 80— — -
N
—.sc N 4
\\
- 40| N
\

= CRITICAL (h-hy), (FEET OF WATER)

-0 _ AN

-08f- — \\
-06 — N\
-04

0Z 04 060810 . 4 6 810 20 a0

0", CRITICAL DIAMETER, (INCHES x 10%)

Figure 4.2 Pressure Required to Cause Instability
of Critical-Size Gas Nuclei

57



instability of a vapor bubble must be modified when the bubble radius

the ceontinuum theory becomes invalid,

approaches molecular size and
The previous analysis has considered only the static stability

of the cavitation nuclei. It appears reasonable to expect that if

nuclei are subjected to transient pressure reductions the critical

pressure for instability might be considerably less than the value

given by Equation (4.6). Noltingk and Neppiras [62], [63] were able

to show, in the majority of cases, that the critical pressure pre-

dicted by the static analysis is not significantly altered by the

duration of the transient. The investigations performed by Noltingk

and Neppiras revealed that the pressure need only stay at the critical

pressure for a time slightly greater than the natural period of oscil-

lation of the bubble. For a bubble diameter of 0.001 inches, the pressure

need remain at the critical value for approximately 10 microseconds.

On the other hand, cavitation experiments conducted at high velocities

on small scale models with short low pressure regions (flow through

venturi type nozzles) can be misleading if it is assumed that dynamic

effects do not influence the critical nuclei size and pressure.

B. Sources of Nuclei

In theprevious section a spherical gas bubble was assumed as
the nuclei for cavitation. Such nuclei do exist near the surface of
agitated liquids as continuously entrained air bubbles. However, at
greater depths, or in a confined fluid, it appears that the gas should
dissolve in the fluid. The partial pressure of the gas within the

bubble is higher than the surrounding fluid pressure because of surface
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tension and thus some gas should diffuse into the liquid. The loss
of gas decreases the size of the bubble, and thus increases the
surface tension pressure which increases the gas partial pressure
and increases the rate of diffusion into the liquid, and so forth.
From Equation (4.6) we have seen that stable spherical vapor nuclei
cannot exist, Congequently, some nuclei source other than free gas
bubbles must be postulated in order to e§plain the cavitation that
is observed in fluids in which free gas bubbles of the required
size for instability are not observed.

When new glass which has been cleaned with acid is ipmetrsed’
in water, the water tends to fill all the microscopic cracks and
crevices. Such a surface is often referred to as hydrophyllic.
Schweitzer and Szebehely [64] ran some gas evolution test by
placing the fluid to be tested in steel and lucite containers.

No precaution was made to chemically clean the containers. With
water they were unable to produce any appreciable supersaturation
without observing bubble formation. However, with petroleum
hydrocarbons, which wet both steel and lucite, they observed
considerable supersaturations (100 percent) without bubble release,
provided the liquid was kept in a static state. Thus, this
illustrates that the properties of the liquid are important when
studying cavitation,

A material in which water does not tend to fill microscopic
cracks and crevices is clagsified as hydrophobic. This type of
material includes almost everything and thus gas volumes are

easily contained in the crevices of foreign particles entrained
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in the fluid or in the crevices of the boundary material itself. It

(g ]

is presently believed that the nuclei needed f£or the cavitation pro-
cess (other than free gas bubbles) are located in the crevices and
cracks of such hydrophobic materials. Harvey, McElroy, and Whiteley
[60] were able to show that in a crevice of a hydrophobic material
it is possible to have contact angles between the liquid, solid,

and gas, such that the surface tension pressure is considerably
reduced and tends to decrease rather than increase the cavity
pressure. Under these circumstances, it is ﬁossible to postulate
an equilibrium condition in which gas neither diffuses into or out
of the gas trapped in the crevice, and it is these microscopic gas
volumes that are currently believed to be the nuclei needed for
cavitation inceptign.

Knapp [65] explained the difference between a pure liquid's
ability to cavitate aﬁd a liquid that cavitates as soon as the
pressure drops below the vapor pressure in terms of 'weak spots."
The findings of Knapp agreed with those of Harvey et.al. [60] in
that weak spots which initiate cavitation usually occur on solid
surfaces in contact with liquids. Knapp observed that normal
cleaning methods were inadequate to remove weak spots from metal
gurfaces, This is probably due to the presence of innumerable
cracks in the metal surface.

In summary, there are three distinct sources of nuclei. Each

source is capable of causing the phenomena of cavitation. These

are:
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1. The free undissolved gas bubble, usually macroscopic in
size,
2. The nuclei that exist in the crevices of foreign particles.
3. The nuclei that exist in the boundary material, Kermeen,
McGraw and Parkin [66] were able to take pictures of this
source of nuclei during a cavitation study.
The interpretation of cavitation tests, in which cavitation
is actually produced in the test facility, is effected by the nuclei
present. To properly extrapolate such test results to the prediction
of prototype cavitation, the relevant scaling factors must be con-

sidered.

C. Cavitation Scale Effects

If the occurrence of cavitation were uncluttered by the appear-
ance of scale effects, the experimental study of cavitation would
be fairly easy. The test of a given shape over a range of Ko
values would give the desired information. An indication of such
an idealized cavitation behavior is presented with the aid of Figure
4.3.

The streamlines and pressure coefficient, for potential flow
past a simple shape, are shown in Figure 4.3(a) and 4.3(b) respectively.
At some point on the body, the minimum pressure occurs. The absolute
value of this pressure is dependent only on the relative flow velocity,
Vo’ the reference pressure, P> and the exact shape of the body.
This minimum pressure value for the given body is thus uniquely

characterized by C » the minimum value of the conventional

Pmin
pressure coefficient in which
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C,= £-% |
P 1/1 Po%‘ (4-7)

In the idealized situation, no cavitation test would be required
because the value of Ko at which cavitation would first appear is
simply -cpmin' If the pressure could be measured at the proper
location, CPmin could be found by a noncavitating test with water,
or even air, as the test medium. However, as a result of scale

effects, cavitation tests are required.

The manner in which a cavitation test would verify the Kio
prediction, in the idealized cavitation situation, is shown in
Figure 4.3(c). A cavitation test is normally conducted with the

initial operation of the test facility at a high Ko value, for

which there 1is no possibility of cavitation. The operating Ko

Vo
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(b) PRESSURE VARIATION (c) DIRECTION OF TEST
ON B0OY

SOURCE: REF. 67

Figure 4.3 Body Flow Dynamics and Idealized Cavitation Test Behavior
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value is then reduced, either by raising Vo or lowering P> with
an associated decrease in the absolute pressure pmin’ until the
value Poin = Py is reached. The reduction of K0 below the in-
ception value (Kio) has no further effect on Poin’ which remains
equal to P, However, the nature of cavitation is changed as KO
is reduced below Kio. At the inception point, the cavitation con-
sists of small bubbles that quickly collapse with tremendous noise
as they proceed into regions of higher pressure. At Ko values
below Kio, larger cavities may form which change the flow and force
relations for the object or conduit.

Unfortunately, little is known about how the conditions, at
the beginning of a cavity, change with the degree of cavitation.
Thus, a detailed study of this could provide useful information.

From this discussion of the idealized cavitation occurrence
situation scale effects may be defined as any flow phenomena which
will cause deviations from the idealized occurrence. Thus, if
the pressure distribution over the body varies with the nature
of the flow, this represents one kind of scale effect. 1If
cavitation does not always start when P, is reached, then another
type of scale effect is represented. The pressure distribution on
a body is affected by such factors as fluid viscosity, surface
roughness and etc. The pressure at which cavitation occurs depends
on such factors as nuclei present, surface tension, pressure dis-
tribution and etc.

Holl and Wislicenus [68] pointed out that the idealized
similarity relation of cavitation (Ko =P - Pv/%povoz) is based

on certain assumptions. These are:
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4.5

1. All pressure differences in the flow are proportional to
P V2.

2. Geometric similarity includes surface irregularities of the
flow boundaries.

3. The vapor pressure in the flow field is constant and the
pressure at which cavitation takes place is the equilibrium
vapor pressure.

4. Cavitation takes place instantaneously whenever the vapor
pressure is reached.

The correct similarity relations, which are needed to describe
cavitation, are unknown. However, Holl and Wislicenus [68} listed
several similarity relations which may help describe cavitation.
These are given in Table 1. The classical relation, included in

Table 1, must always be satisfied together with the requirement

of geometric and kinematic similarity.

The Investigations of Cavitation Inception

In the following sections we will discuss the experimental
and theoretical investigations of cavitation inception for unseparated
flow past streamlined bodies, separated flow past non-streamlined

bodies, and flow through venturi type nozzles, orifices, and tubes.

A. Unseparated Flow Past Streamlined Bodies

A streamlined body is a body in which the curvatures are
sufficiently mild to permit nearly ideal flow (that is, flow without
boundary layer separation). The pressure distribution on this body,

as obtained from potential flow theory, would be expected to be in

64




SUOTIE[9Y £ITILTIWIS UOTIEITARD T°% O[qEL

("su0) = X 203) T

(UoT3IEITAED JO $193uID W03 FIONU —-ﬁ
: - . I% IIoNg jo 1aquEng

YITA sIsERIdUT Y *35u0) = Lyaweu 3y Kup) ‘3suon = 7
. 3331
- neg
¥ -3300) = O/ V1. = A s33303 wy3zeuy 37d038039TR
YITA seEERIOUT % *3800) = “T,A 1aquny xaqep puy 23930 poy
Jue3Isuo) jo Awy uojsusl IINIINg IeTRISTOR
(293ep p1o) 203 °3-3) [rves Laan o1 5\2_ 37 pe3d318au aq Lwm () pus (9)
2 Ta = 77 ‘zequng LI E T
ETL .
*IPVOY = ‘0&
“IA Suisesaou; T4 a w3sesiy jeey
431A seseeioep 3 W) = ' —_D ATt ®r 4 puy
Pu Ta *a A ™) 1 woyIwzyaodes Jo 8339333
- - 9339333
‘IBU0) = A Wx0FIINYY sxnssexg g
IR saszex -
A W3ITA suy X "20w03 = d wwo) = 4/ aodwp Jo s339373 spmeniponseqy
F 7 usqa zsmors saswerduy y 31 M .
Sugseaxduy yIja saseazdap 3 /ive "3880) = /Yy :°3su0) = 0~ 203 s?p3tavindazxy
* “1/4 yatn seswazsur x *3%u03 = 9/4 3ImFang Jo 9333338
uoy3eaTAR) FATIUAIXY
Y3t K1uQ IAT3INNI3Y 30803 = A ‘19000 = /A = W (£3511q18393dw0D)
£1qeqoxg -a1qeIdTpeIg 08 Iequny YOER JuEIsWO) JO AR 13.8& ¥J3190] puy J¥ISELX
u'\b Suiswazouy . -
YITR FWwaxdaq uolielras) . \ *IPU0Y = ”M” A= h S3930% wIIZIUY nee
U $35UP13IITq TeITIINA sy = 1Y /A Layawyymyg 3 s, Ipno1g puy £3taexd "‘«M:a
“1A yI3a "IUC) = A/TA = Y sading wilisul -u”nwmn
 sIswardul % *3su0) = 1A L3rzeTymis JOo ART ,sproukay puy Kigsodsia sreenkpozphy
*18U0Q = ¥ L “38000 = mw L] (A203qy [wdyssElD) nold
$339333 ol e 03 Truot3ledoxd 4 - d a-e (0 s#3103 wyiaeuy Teep1

A1uo 1 pus 5 uy saBuey) jo x
uQ 9399337 s1qeqoxy

sat3asdoxg pIngg sweg 103
sjuImaznbay L31xerTeIS

s3uamaaynbay
£332RITWS (iU

s3TIsTIRI0RINYD)
puUy 83310%

ﬁwwu RO

65



good agreement with experimental measurements if the boundary layer
displacement thickness is small compared with the body diameter.
This condition is usually met if the Reynolds number is sufficiently

high to produce a fully developed turbulent boundary layer. [99]

Knapp and Hollander [70] made a high-speed photographic (20,000
pictures per second) study of the formation and collapse of individual
bubbles during the flow of water past a 1.5 caliber Ogive-Nosed body.
The life of the bubble from the instant it was large enough to be
detected until the completion of its first collapse was only about
0.003 seconds. The formation period required about three fourths
of this time, leaving one fourth for the collapse period. The
conditions of the water tunnel were: Vo = 40 fps, P, = 0.40 psia,
and P, = 4 psia.

In many of the pictures taken, it was obvious that the collapse
of one bubble had a major effect on the collapse of its neighbor.
Furthermore, as the severity of the cavitation was increased, the
bubble concentration built up very rapidly, so that rarely if ever
could a single bubble be seen to form and collapse without inter-
ference.

Kermeen, McGraw, and Parkin [66] investigated several geo-
metrically similar hemispherical and l.5-caliber Ogive-Nosed bodies
for cavitation inception at various water tunnel speeds. The results
of this investigation are shown in Figure 4.4. Figure 4.4 illustrates
that the measured incipient cavitation numbers were less than lCPminI
and depended on both the model size and the test vélocity. However,

the data indicates that the incipient cavitation number does approach
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'Cpmin| for large size bodies and high tunnel speeds. It is suggested
that the scale effects shown in Figure 4.4 are primarily caused by

the low concentration of nuclei and the small nuclei sizes present

in the test water. [71] The curves shown in Figure 4.4 are average

curves drawn through the data.
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Figure 4.4 Incipient Cavitation Number as a Function of Free-Stream
Velocity for Bodies With Hemispherical
Noses and 1l.5-Caliber Ogive Noses

Figure 4.5 shows how the desinent cavitation number varies with
the Reynolds number for the flow of water past Joukowski hydrofoils.
For a given size the desinent cavitation number increases with the
Reynolds number. Furthermore, for a given Reynolds number, the
desinent cavitation number decreases with increasing size. On
the other hand, the NACA 16012 hydrofoil data shown in Figure 4.6
differ markedly from the trend shown in Figures 4.4 and 4.5. In

Figure 4.6 the cavitation number decreases for a given size with
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increasing Reynolds number (with increasing velocity) and increases
for a given Reynolds number with increasing size. This unique
behavior goes together with the flat pressure distribution of these
profiles at O-degree angle of attack (see Figure 4.7) in contrast
to the peaked minimum pressure of other streamlined bodies treated.
Calehuff and Wislicenus [74] reported that cavitation on the profiles
with flat pressure distribution had the form of traveling bubbles,
whereas with peaked under-pressures cavitation appeared to be attached
to the surface.

In Figures 4.5 and 4.6 the scale effects can be seen. Also, the
effect of pressure distribution on the inception of cavitation is

shown to have an important influence.
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The type of flow in the boundary-layer has an important effect
on the inception of cavitation. Daily and Johnson [71] investigated
the effects of a turbulent boundary-layer on the inception of
cavitation for the flow of water through a two-dimensional nozzle.
The flow in the boundary-layer was rotational and the minimum
pressure did not occur on the wall (for large body curvatures) but
slightly away from it in the center of the eddies that compose the
boundary-layer. Thus cavitation can actually begin at values of
Ko that are slightly greater than Icpminl because of the additional
pressure reduction caused by turbulence. However, Daily and Johnson
pointed out that the boundary layer turbulence effect is small and
can usually be neglected at the high velocities that are normally
encountered in hydraulic structures where cavitation is expected.

The effect of air content on the occurrence of cavitation, for
water flowing past hydrofoils, was investigated by Holl [56]. These
hydrofoils were tested at various angles of attach. Figure 4.8
shows the results of these tests.

Holl [56] observed that two types of desinent cavitation could
be determined. As the pressure was increased causing the cavitation

to disappear, a pressure was reached where the cavitation disappeared

uniformly across the span. This was referred to as areal cavitation..

However, it was observed that several cavitation bubbles still clung
to the surface and continued to do so up to very high ambient
pressures., These spots of cavitation were manifest on the NACA

16012 hydrofoils at angles of attack above the critical angle.
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The critical angle of attack is that angle at which the change
of Icpminl with angle becomes very large. The critical angle of

attack for the NACA 16012 hydrofoils is about 1.5 degrees. [75]

Oshima [77] developed a relation, from boundary~layer gas-
nuclei interaction considerations, which allows predicting the
Reynolds number variation in Kio for flow past axially symmetric
bodies. Calculations of the turbulent boundary-layer growth on
the test bodies were combined with the suggestions of Daily and
Johnson [71], concerning nuclei growth and turbulence effects to
predict the scaling of cavitation inception as observed on the
axisymmetric bodies referred to previously. Oshima's formula
appears to correspond closely with some selected experimental
data. However, before definite conclusions can be formed about
this work, additional experimental investigations (with liquids
other than water) are necessary.
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Knapp [78], in 1952, derived a formula which is similar to Oshima's
formula. However, Oshima was able to show that Knapp's formula is a
special case of his theory.

The inception of cavitation on isolated surface irregularities
imbedded in a turbulent boundary layer was investigated experimentally
and theoretically by Holl [79] and [73]. Holl was able to show how
the effect of a small roughness element (of height, h) on a smooth
surface may greatly increase the inception cavitation number (see

Figure 4.9). In terms of the inception cavitation number, K of
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Figure 4.9 Calculation Effect of Relative-Roughness
for a Particular Flow

the roughness element and the pressure coefficient of the smooth

body, the inception cavitation number of the roughened body is

Kio=-Cp+ (1~Cp)Kw . (4.8)
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The roughness is most detrimental when placed at the minimum pressure-
point of the parent body, that is, when Cp = Cpmin'

Holl [79] determined how Kro varied with the ratio of the height
of a roughness element, h, to the boundary-layer thickness, &, for
different velocity-profile shapes and two different shapes of roughness
elements. The velocity-profi;e‘shape was expressed by the boundary-
layer shape parameter =~—§£— , where &% 1is the displacement
thickness and 6§ the momentum thickness. Two families of cylindrical
roughness elements having constant cross section were studied. One
family had a circular-arc cross section. The other family had a

triangular cross section. The results of this study are shown in

Figure 4.10,
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Figure 4.10 Cavitation Inception on Roughness Elements
in Boundary-Layer Flows
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The seriousness of roughness effects in producing cavitation
inception scale effects is illustrated by the following example.
[79] Consider a body with Cpmin= -0.50 of such proportions and
tested at such a speed (Vo = 50 fps) that § = 0.048 in. As
Figure 4.9 shows, the effects for the sharp roughness of Figure
4.10 (and a fairly-normal turbulent boundary layer of H = 1.33)

are considerable. A 102% (Ki - | ¢ /|

Cpmin

Pmid slx 100) increase

in Kio occurs for a 0.001 in. high roughness and much larger

effects are easily possible.

B. Separated Flows Past Non-Streamlined Bodies

If the flow past a body is decelerated too rapidly, the
boundary-layer separates and the pressure distribution along the
boundary is no longer a true indication of the minimum pressure
in the field. Unfortunately, there is no exact method of obtaining
the minimum pressure coefficient in the flow field in terms of the
measured boundary pressure. Nevertheless, some experimental studies
of cavitation inception have been reported.

Most of the available test data pertain to sharp-edged disks
(Figure 4.11) and zero caliber ogives, i.e. cylinders with a flat
cutoff end facing the flow (Figure 4.12). The most striking
difference, as compared to the behavior of streamlined bodies, lies
in the magnitude of the changes in the desinent cavitation number,
which varies by a factor of two for a change in Reynolds number
by a factor of ten. This appears to be at least twice the largest
change observed with most of the streamlined bodies (excepting the

Joukowski hydrofoil data shown in Figure 4.5). Furthermore, the
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cavitation number of bluff bodies (i.e., separated flow) continues
to increase with increasing Reynolds number. 1In this respect the
test points of the zero-caliber ogives (Figure 4.12) seem to continue
the sharp disk data (Figure 4.11) without a break or indication of

leveling off.

C. Flow in Venturi-Type Nozzles
The venturi-type nozzle has proved to be an effective

shape for studying cavitation. This is due to the fact that a
wide range of flow conditions are easily obtained. Thus, studies
can be made for various degrees of cavitation under different
pressure distributions.

In the experiments cited above <?ermeen, McGraw, and Parkin
[661), no consistent effect of air content, varied between 7 and
13 ppm, could be detected. This disagrees with the observations
of Numachi and Kurokawa [83], McCormick [80], Crump [84], [85], and
others. Crump [84] found a significant dependence of inception on
total air content in experiments with a venturi nozzle having a
diffuser angle of 5°. He reports that in fully aerated fresh water,
cavitation first appeared at the boundary in the form of a small
vapor cavity. In deaerated fresh water, Crump found that cavitation
first appeared in the form of individual bubbles which do not neces-
sarily form at the boundary. Under these conditions, bubbles formed
and disappeared downstream under ambient tensions as high as four
atmospheres. Furthermore, he found that higher tensions were re-

quired as the velocity was increased.
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Figure 4.13 Critjcal Pressures for the Inception of
Cavitation in Fresh Water of Varying Air Content
Figure 4.13 shows that in the undersaturated liquid it was
possible to obtain tensions as the relative air content a/as
was reduced. Results in a nozzle with an abrupt expansion,
however, show opposite trends in the pressures required for
inception; [85] although here, too, tensions were obtained.
Comparable results for sea water are shown in Figure 4.14; in
this case, bursts of cavitation were observed at pressures well
above vapor pressure. While the trends in these experiments were
fairly definitive, the very large scatter of results is indicative
of the need for understanding the behavior and distribution of
nuclei; i.e, the mechanisms by which nuclei are stabilized and
the characterization of nuclei content; e.g., a "spectrum," or

description of number and distribution in size. [97]
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Williams and McNutly [86] investigated the effect of an additive
(sodium nitrate dissolved in distilled water) on cavitation inception.
The incipient cavitation number was found to increase (cavitation
to become easier) with an increase in the percentage (from O to 0.47%
by weight) of dissolved sodium nitrate.

The flow of liquid nitrogen through a venturi test section has
been investigated by Ruggeri and Gelder [SQJ. Just prior to incipient
cavitation, the minimum local wall pressuré was significantly less
than the vapor pressure corresponding to the stream liquid temperature.
This pressure difference was called effective liquid tension. The
temperatures and pregssures measured within regions of well-developed

cavitation were in thermodynamic equilibrium but were less than the

temperature and the saturation vapor pressure of the approaching
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stream. These differences increased with both stream velocity and
extent of cavitation.

Figures 4.15 and 4.16 show comparisons of cavitation tests of
Nitrogen, Water, Freon-114, and Ethylene glycol (References [88],
(877, [89], and [90]) in the same venturi test section. Nitrogen
sustained more effective tension than the other liquids tested.
This indicates a possibility that temperature influences the
nuclei within the liquid and test section.

The effective tensions for all liquids studied increased with

increasing flow velocity. The effective tensions for Freon-114 in-

Y 4 . U YT Ul U 202w

. o o
creased appreciably as the temperature was increased from O to 80 F,.

The effective tensions for Ethylene glycol were practically independent
of the temperature level for the range studied. For water in the 40°
to 80°F range, effective liquid tension was practically independent

of temperature but increased appreciably as the temperature was in-

creased to 1200F.
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Figure 4.15 Comparison of Incipient Cavitation Number for Nigrogen,
Water, Freon-114, Ethylene Glycol Flowing Through Same Venturi Model
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Ethylene Glycol Flowing Through Same Venturi Model

Lehman and Young [57] investigated the pressures and cavitation
numbers, near the location where incipient and desinent cavitation
occurred, for water flowing through different convergent-divergent
test sections. The results of this investigation are shown in
Figures 4.17 and 4.18. The cavitation pressures measured near the
plane of incipient and desinent cavitation were generally higher for
the tests made using an abrupt contour test section. The curves shown
in Figure 4.17 disagree with what might be expected.

Hammitt [91] made an investigation similar to the investigation
made by Lehman and Young [57]. Hammitt observed no difference between
the incipient and desinent cavitation numbers while studying the
flow of water through a smoothly changing internal contour nozzle,

This corresponds closely with the investigation made by Lehman and

80




o
(=4

FLUID: WATER
SOURCE: REF. 57|

—O~—INCIPIENT
O~ DESINENT

©
O

3

P

/

/
e conioun
[

SMOOTH CONTOUR

7[ TEST SECTION

X
%

o
(<]

——

8
S~

Y

/|

CAVITATION PRESSURES NEAR CAVITATION PLANE (PSiA)
FS
Q

10 —“‘f;;‘
0 =3
-i0
0 40 80 120 160 200 240 280

THROAT VELOCITY, V. FPS

Figure 4.17 Cavitation Pressures Near Cavitation Planes As a Function
of Stream Velocity at the Throat of a Venturi

0.800

FLUID: WATER | I l
—o— INCIPIENT, REF. 57
0.700] 2CURCE {—D— DESINENT, REF 57
—0— SMALL SMOOTH CONTOUR
TEST SECTION, REF. 9|
—v— LARGE SMOOTH CONTOUR

b -
x
o
2
L- 4
& 060 TEST SECTION, REF. 9|
z g
E 0.500
E /
Z
8 o400 ﬁ-/‘ ABRUPT CONTOUR ——
« TEST SECTION
<
w
Z 0300
(7]
[ 4
W
;3 0.200
2 SMOOTH CONTOUR
z TEST SECTIONS
9 0.100 4
[t
z /]
> 7
hi 0 fr/;;/
-0.1005 40 80 120 160 200 240 280

THROAT VELOCITY, Vi ,FPS

Figure 4.18 Comparison of Cavitation Numbers for Water
Flowing Through Abrupt- and Smooth-Contour
Venturi Type, Test Sections

81




Young on a similar shape nozzle. However, the abrupt contour tested
by Lehman and Young indicates that the conditions at the plane of
cavitation are a function of the pressure distribution prior to

cavitation.

D. Flow Through Orifices

The jets flowing from orifices into filled conduits (sudden
enlargements) represent cases of extreme separation where, in addition
to expansion and diffusion of the main jet, there is the generation of
secondary flow and countless small eddies and vortices. The pressures
within the eddies will be appreciably below that of the surrounding
fluid, particularly when the velocity of orifice efflux is high. These
low pressures can quite easily reach the vapor pressure of the fluid
and there exists the possibility of cavitation.

The effect of cavitation on the discharge coefficient of ori-
fices has received some attention [93], [94]. However, only the
investigation of the flow of pure fluids through orifices will be
reported at this time.

Jacobs and Martin [92] investigated the flow of water, liquid
hydrogen, and liquid nitrogen through sharp-edged orifices. They
were unable to produce cavitation as long as pure liquid entered
the orifices. With liquid nitrogen, the pressures at the venae
contractae were as much as 170 inches of liquid below the vapor
pressure, while with liquid hydrogen the pressures at the venae
contractae were as much as 192 inches of liquid below the vapor
pressure. These were the lowest pressures attainable with their

apparatus.
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Jacobs and Martin observed that the only way cavitation could
be produced was to have two-phase flow.entering the orifices., 1In

many tests even when two-phase flow entered the orifices, cavitation

symptoms were not evident.

E. Flow Through Conduits

Mikol and Dudley [95] investigated the conditions at
which cavitation inception occurs for the flow of Freon-12 through
small bore copper and glass tubes. The point of inception of
cavitation was observed to move by discrete jumps rather than in
a continuous manner as operating conditions were changed. This
was probably due to the gradual and uniform pressure gradient in
the tube. In venturi test the inception site is fixed within
rather close limits by the nonuniform and sharper pressure gradients
imposed by the geometry. No such shift has been reported in any
venturi test.

Mikol and Dudley observed that the tube material had the
most important influence on the incipient cavitation number. The
incipient cavitation number for the glass tube was nearly twice
that for the copper tube. This result is in agreement with the
nucleation theory expectation that a metal surface should provide
many more nucleation sites than a glass surface.

Fauske and Min [96] investigated the flow of slightly sub-
cooled Freon-1l through apertures and short tubes. They used a
modified cavitation number to establish a criterion for determining
single-phase or two-phase flow regimes in short tubes. The

modified cavitation number is:
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4.6

}-(-o’ 2%AV*P (TL;) , (4.9)

where AP 1is the pressure difference, P, - P, for two-phase flow

or p_ = Py for single-phase flow. Figure 4.19 indicates that

o
for modified cavitation number below 10 the fluid exhibits completely
metastable single-phase flow. When the modified cavitation number

exceeds 14, two-phase flow exists. In the range of io between

10 and 14, unstable transitional flow occurs.
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Figure 4.19 Correlation Number Determining the
Occurrence of Single- and Two-Phase Flow Regimes. [?6]

Conclusions

The preceding discussions are primarily an attempt to point
out some of the knowns and unknowns about cavitation. For a
constant cavitation number, both the time of exposure to the
region of pressure below the vapor pressure (underpressure)
and the amount of this underpressure, are functions of velocity.
It may not be unreasonable to assume that the gross cavitation
pattern is largely controlled by the nucleation process. It
is conceivable that the nucleation process may depend upon time
of exposure to underpressure and absolute value of this under-

Pressure in such a way that the effects are not cancelled for
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constant cavitation number. With systematic experimental studies
of different liquids flowing through various pressure distributions,
it may be possible to obtain a reasonably correct Kio value or
trend for an arbitrary body and liquid by means of some relations
between underpressure and relaxation time (time fluid remains at
pressures below the vapor pressure before cavitation occurs). Also,
a method is needed to accurately predict the conditions at the po-
sition where cavitation starts for limited and profuse cavitation.
In the literature reviewed there is a total absence of experi-
ments related to the cavitation phenomenon for flow in bends. Most
of the conduits in hydraulic machinery where cavitation occurs are
curved. There are no clear ideas as to what actually takes place
under such conditions. What portion of the flow is actually
vaporized is of interest. Also, it would be interesting to see
how compound liquids (petroleum oils) behave under cavitating

conditions.
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CHAPTER V

Previous Investigations on Bubble Dynamics

5.1 Introduction

Bubble dynamics is the study of bubble growth and collapse. The
primary variables affecting the growth and collapse are= the type of
liquid around the bubble, the temperature and pressure fields in the
liquid and inside the bubble, and the type of gas inside the bubble.

In this report only the single component, liquid-vapor phase will be
considered.

A knowledge of bubble dynamics is useful in the correlation of
heat transfer data in the boiling regime and in the prediction of
cavitation in a flowing system. The cavitation problem is presented
in detail in another section of this report. The application of bubble
dynamics to heat transfer correlations is reviewed at the end of this
chapter.

The theories on bubble dynamics are considered in three main groups:
1. growth in a superheated liquid, 2. collapse in a subcooled liquid,
3. growth in a non-uniform temperature field.

Since experimental verification of the theories on bubble dynamics
has been limited to the asymptotic growth phase, the theories are con-

sidered for this phase only.
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5.2

Bubble Growth in a Superheated Liquid
Rayleigh [98] developed the equation governing the motion of the

bubble wall in growth and collapse of a bubble:

2 QL

It is possible to solve this equation for constant vapor pressure, P>

RR+ 2 R*= fo- B (5.1)

by numerical methods and by repeated application of gamma function so-
lutions. However, when a vapor bubble grows, the latent heat of vapor -
ization must be supplied at the liquid-vapor interface by the liquid
around the bubble. The resultant drop in liquid temperature reduces
the growth rate of the bubble. A vapor bubble in a superheated liquid
can be expected to grow ﬁithout bound as long as there is superheat in
the liquid to provide latent heat of vaporization.

The pressure in the bubble is not a constant since the temperature
at the liquid-vapor interface may vary. The vapor pressure is taken,
in all cases, to be the saturation pressure associated with the temper -
ature at the bubble wall.

There have been several methods applied to the analytical solution
of the bubble dynamics problem. Some assumptions identical in all
approaches are:

1. The bubble is spherical in shape.

2. The pressure field in the liquid is known.

3. The temperature field in the liquid is known.

4, The surface tension pressure is 2 -g?-.

5. The liquid and vapor are pure.

6. Fluid motion is irrotational.
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7. Viscosity effects are neglected.
8. The liquid is incompressible.

9. Thermal conductivities and specific heats are constant over
this temperature range.

10. Bubble wall velocity equals liquid velocity at the wall.

11. Bubble wall velocity is small compared to sonic velocity in
the liquid.

12, The vapor pressure and temperature are uniform inside the
bubble.

13. The vapor inertia is neglected.
Where these assumptions are applied to the continuity equation and
the equation of motion, a differential equation for the radius of the

vapor bubble is determined:

RE+2 R2 AM-£ ac 5.2

d R

Equation (5.2) is the starting point for all analytical solutions.
Variations in the theories result basically from the way in which the
bubble wall temperature (and therefore vapor pressure) is determined.

A. Plesset-Zwick Approach

Zwick [99] solves Equation (5.2) using the liquid temperature,

determined from the energy Equation (5.3) to find the vapor pressure.

ar S
o, C,,L{ + V. VT} kVT+q (5.3)
He used boundary conditions on Equation (5.3) as follows:

v, 2T
Rk S

= 3
heafw) 3 &{Q 9”‘)? (5.4)
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and

Tlhe)= T, (5.5)

The mathematics of solving Equations (5.2), (5.3), (5.4) and (5.5)
together is presented and the bubble radius is given for four phases of
bubble growth. The phases are arbitrarily selected by Zwick and are
called: delay period, early phase, intermediate phase, and asymptotic
phase. The phase classification depends upon which physical variables
may be neglected for a given range of values. 2Zwick uses the physical
properties of water to explain which terms may be neglected.

Plesset and Zwick [100] give an alternate solution to Equation
(5.3). They consider the temperature change in the liquid to be con-
centrated in a thin boundary layer around the bubble and treat the
problem as a nonsteady heat diffusion problem. Then in reference [101]
they use the temperature distribution of reference [100] to solve the

bubble dynamics problem. They use the relationship

o (T) - fo
o
where A is a constant and T from reference [100]
o(R )(w) ReY)
_ _ ‘5_ _ Q 2 (x Y Y= x : (5'7)
T=T- 2w (w) dx.

{ j R"Mdv}/z

N(t) 1is the heat source per unit volume and D = k/gC.

A(T- IOD) (5.6)

Plesset and Zwick [102] give the asymptotic solution for a vapor
bubble in a superheated liquid. The solution is the same as the one
given in reference [101], but this analytical approach is compared with
experimental data. The bubble growth rate is proportional to the square
root of time:
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R=Re (ﬁ*—)(%ﬁf& (5.8)

Plesset [103] discusses the validity of some of the assumptions
made in the analytical solution given. He gives expressions to be
used in assessing the error resulting from assuming that the vapor
pressure is uniform and that the wall velocity is the liquid velocity.
These expressions give a very good feel for the order of magnitude of
the terms involved.

B. Forster - Zuber Approach

Forster [104] gives a mathematical solution to Equation (5.3)
with no heat generation (i.e., q = 0). He assumes that the motion of
the bubble wall R = R(t), is a known function. The boundary conditions
are either constant temperature or vanishing heat flux. He obtains an

approximate solution of the original problem by solving

_ d Q&) yo(4-x) [q({—x) oL o(4-x)
IT- 41 Yool R(9Ye-x' TN rig) O°F R‘(?)}e R<§>}

where R(E) 1is an appropriate mean value = / R(x) R(t). He explains

that the second term in this equation vanishes at x = t; and, when dT

becomes small, neglecting the second term will result in small error.

Therefore this term is neglected and the resultant solution is

£ L.
T = —Lv B, R ) R dx
Cor b Ora)?2 ) Rex) Ree) fe—x

Forster and Zuber [105] solve Equation (5.2) by using the Clausius-

(5.9

Clapeyron relation

'P’v“ﬁ»* Ly (/vs coS) (5.10)
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Then Tvs -T is found from the solution of (5.9). 1In additionm,

g
when R >R the terms R R +'-%— R® + -—2§?—i€ may be neglected when
compared to (PV - Pu)/pL' These terms are th: hydrodynamic terms. For
a growing vapor bubble in a superheated liquid the solution of Equation
(5.2) with (5.9) and (5.10) need be completed only for a time interval
from zero to one millisecond and then the hydrodynamic terms may be
neglected. This solution also gives the bubble growth rate proportional
to the square root of time.

Zuber [106] considers the problem of bubble dynamics in both a

superheated and a subcooled liquid. He starts with a heat balance

T\(’R-‘Ts): Lvey %—i (5.11)

for a uniformly superheated liquid. The heat transfer coefficient,

h, was determined from the one-dimensional transient heat conduction

problem.
ST KT
a"a—é‘f ¢ (5.12)
Then,
2T K(T-Ty)

h(T-T) = k(;,g)z L= e (5.13)

The solution of Equations (5.11) and (5.13) agrees satisfactorily with
experiment.
C. Birkhoff, Margulies, and Horning
The above authors in reference [107] assume the solution of

Equation (5.3) to be of the form:
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T'Cryt) = gcs) (5.

where

s= Y/(at)" 6.

1
This implies that the bubble growth rate is X, (at)®. K, 1is a

dimensionless parameter. Equation (5.3) with (5.14) and (5.15) gives

z )
feo + { oz k-WK [(sy=0 (5.

S e_s2

This solution to Equation (5.3) is then of the form

Tint)= A-B- F® (.

A and B are constants and FK(S) is defined:

o0 2 3
Fe(o) = JX‘zexP g—é_ EMZ dx. (5.

2><EL

For one particular range of the dimensionless parameter, K this

1°

solution gives the result

/
R- <%>ZM‘— (Tus- Too) (ot ) (5.

L

This is the asymptotic growth rated equation determined by Plesset
and Zwick for a uniformly superheated liquid. However, other ranges
of K, give other asymptotic solutions.
D. Bankoff and Mikesell

Reference [108] considers Equation (5.2) where p, and p_

are constant (the Rayleigh solution) and compares it with experiment.

Then the authors solves the same equation allowing p_ to vary the
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way it would in cavitating flow. The analytical solution of Equation
(5.2) with p, constant is used to fit the experimental data.
E. Scriven Approach

Scriven [109] considers the growing vapor bubble in an infinite
medium of uniform superheat. He considers the growth to be controlled
entirely by the transport of heat and matter across the bubble boundary.
He states that the solutions presented above are valid only over re-
stricted ranges of pressure and superheat. His solution is exact under
the assumptions made and is adequate for all but the earliest stages
of bubble growth. He lists assumptions which are substantially those
of the beginning of this section. He arrives with Equations (5.2) and
(5.3) by considering the continuity equation, equation of motion, and
energy equation. The exact solution to Equations (5.2) and (5.3) results
from neglecting the hydrodynamic terms. His exact solution reduces ap-
proximately to those of Forster-Zuber and Plesset-Zwick, depending upon

the growth constant, pB*. Where B* is defined
—_—
R= 2@*1&_{: . (5.20)

Figure 5.1 is a comparison of Scriver's solution and the approximate

solutions:

_._}/ 2AT K% PR
O [Lv+ (Co- Coy)T] ) (S (5.21)

R-" (_,_7%)'/2. AT V PLCPI K'é , ?* >>0

: (5.22)
[Lv + (Cp;— va) A'P]
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Yang and Clark [110] solve Equation (5.3) neglecting the term
V - VI. The solution is almost identical to that of Forster-Zuber
but a coefficieﬁt of bubble growth given by Scriven is again intro-
duced and the final solution depends on the selection of PB*. This
development is compared in a chart like Figure 5.1 to the solutiéns
of Scriven and Plesset-Zwick. Plesset and Zwick's solution is a
closer fit to the solution of Scriven than is the theory of Yang and
Clark.

At a conference on bubble dynamics [111] Forster and Zwick dis-
cussed the merits of their two respective theories. The general con-
clusion reached was that the Plesset-Zwick theory could be as accurate
as desired, depending only on the order of approximation; but that the
first-order approximation in effect reduced the boundary layer to a
thickness of zero and thus eliminated the convection term. The Plesset-
Zwick solution requires the evaluation of twenty-two coefficients while
the Forster-Zuber solution requires only two.

For all of the analytical solutions presented above, only the
asymptotic growth phase has been studied experimentally because only
in this phase of the bubble growth does the bubble become large enough
to photograph easily. The following experimental work has been done in
verifying the analytical approaches.

Degarabedian [112] observed bubble growths in superheated water,
carbon tetrachloride, benzene, ethyl alcohol, and methyl alcohol, and
found their growth rates close to those predicted by the Plesset-Zwick
theory. The same author in reference [113] gives more details on water

with the same result.
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5.

3

Parmentier and Schwemin [114] found that the Plesset-Zwick and
Forster-Zuber theories were adequate in predicting the bubble growth
in liquid hydrogen. The data of Ellion [115] for superheated water

is also correlated by these theories.

Bubble Collapse in a Subcooled Liquid

One reason for considering the bubble collapse separately from
growth is that for many collapse problems heat transfer effects may
be neglected and the heat Equation (5.3) need not be solved. (See
[101]. Florschuetz and Chao [116] examine the relative importance
of the effects of heat transfer and liquid inertia on collapse. In
highly subcooled liquid the liquid inertia terms dominate the collapse.
For this case the vapor pressure does not change from its initial
value,

For very small subcooling of the liquid, the collapse process
is very slow and the vapor pressure equals the external system pressure.
This results in purely heat transfer controlled collapse.

Between the two extremes the contribution of both heat transfer
and liquid inertia must be considered. For a subcooling of 780 C in
water, the heat transfer effect may be neglected with almost no error
[101].

Plesset and Zwick [101] also present a solution for the case
where heat transfer effects must be considered. The solution invclves
the numerical integration of four equations given in Chapter 8. If
the experimental results from the present investigation show that the
Rayleigh solution does not apply, then the equations of [101] may be

solved for better correlation.
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Bankoff and Mikesell [108] considered some experimental work of
Ellion and found that the Rayleigh equation could be applied to the
collapse with little error. This subcooling was 35° F.

McNieto [117] gives a power series solution of the Rayleigh
equation for the collapse of a vapor bubble. This is valid for a
zero vapor pressure. Numerical solutions in tabular form are pre-
sented.

Levenspiel [118] considers the Rayleigh solution in the form:

o[

Ro = radius at start of collapse

He then includes the effect of residual permanent gas. However,
except for this case the vapor pressure is assumed zero. The com-
parisons are plotted for visual observations.
Fritz [119] presents the integration of Equation (5.23) using
gamma functions. The variables R/Ro and
1 ( R )3/2.
} RRo 4(%)
R

R, [4- (RR.)]%

are presented in tabular and graphical form. For each value of

R, the time from the start of collapse can be determined using this

table or graph and Equation (5.23) along with values of R, py» and

P .
[+ -]
The experimental works of Florschuetz and Chao [116] and Levenspiel

[118] indicate that there is some heat transfer effect at subcooling

o . . .
of 30" F or less in water. It seems that more experimental work is
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5.4

needed in this area. It must be pointed out that the Rayleigh equation
is not valid near the point of vanishing collapse since this equation

does not include the surface tension term.

Growth in a Non-Uniform Temperature Field
In heat transfer problems the heat is normally transferred to the
liquid from a solid boundary. This solid boundary sets up a non-uniform
temperature field in the liquid. Since all of the theoretical approaches
considered thus far have concernea only uniform temperature in the liquid,
additional boundary conditions must be applied to the previous theories.
A. Forster and Zuber
Zuber [106] extended the Fritz-Ende equation to include
the effect of a non-uniform temperature at a solid surface by adding
a term, 9y corresponding to the heat transferred from the heating
solid to the liquid.
L dR__ To—'l-é _% (5.24)
vars S Jme T |
Zuber suggests the modified equation to use in correlating data:

%b'}}‘f—&g
2KAT

(5.25)
4

Fz: _££E£al;fl'yii£;¥: 1"
Qv
Forster [120] shows that another way to account for the non-uniform
temperature field results by considering an exponential temperature dis-
tribution of the form T = T_t (Tw - Tw) e-X/H, Here x 1is the distance

from the wall where the temperature is 1/e of the total change. Then

for R << H
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and for R >> H

3 " |
R =4 QC&VC';‘QVAT'— H (%f) Z.,. cowst. (5.26)

This seems to indicate the correct power law for the experimental data
of Staniszewski [134] and Griffith [121].
B. Griffith
In [121] Griffith assumes a linear variation of temperature
from the heating surface to a boundary layer depth into the liquid, b.
He gets two sets of differential equations and solves them by numerical
integration. All numerical solutions will not be presented in this
paper.
C. Savic and Goshell
These authors in [122] consider both linear temperature
distributioﬁ from the wall and radial from the bubble. These results
are in fair agreement with the numerical results of Griffith. This
was also a numerical solution.
D. Dougherty and Rubin
Dougherty and Rubin [123] correlate experiments according
to an asymmetry ratio, tm/tc’ (where tm = time to maximum bubble
radius and tC is total bubble lifetime). For linear temperature dis-
tribution from the wall, no surface tension effects and no viscosity

effect,
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R&)z?f&)\t[d“f m E‘-’ Alep) [R,—(Q— Rn)__)—Cé—T)RZ(T)Z (5.27)

Koav Ts\ /!
where:
R0 = Bubble radius at start of asymptotic growth
Rm = Maximum bubble radius
Rn = Radius at nucleation
Rr = Radius of isothermal bubble

The integral is made stationary using the calculus of variations and

from this stationary curve

f o d= G (o) " ()
o A= G () (A

Dougherty and Rubin checked Equation (5.28) with the data of Ellion

(5.28)

and found close agreement. However, in most of these cases the
mathematics involved is certainly complicated enough to be avoided
when possible. The Zuber correlation seems to involve the least
amount of complications.

Gunther [124] did some experimental work with water. This data
was considered by Zuber but was not included in Zuber's article.

Ellion [115) performed experiments on subcooled boiling and
this data was considered by all the papers presented on the non-
uniform temperature approach. All claimed fair agreement.

The following references are for experimental work in surface
boiling: [125], [126], [127], [128], [129]. Comparison to theory

was not possible for many of these references.
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5.5 Correlation of Boiling Heat Transfer Data
Engelberg-Forster and Grief [130] correlated boiling heat transfer
data in terms of Ap (i.e., p, = pw) taken from Equation (5.2) and
found one form of correlation that fit their experimental data. The
equation is
3 M2 2 '/3
L e S
D

Costello and Tuthill [131] experimented with superheated water

s

(5.29)

under the effects of acceleration and found that only Equation (5.29)
was satisfactory in correlating their data.

Forster and Zuber [132] show that the product of bubble radius
and radial velocity is a constant and formulate a Reynolds number
for flow in the superheated liquid near a heating surface. This

Reynolds number becomes:

R _ PL (Tvs— Tws> Cre (’l_ﬁ Z
e= N Lo

They use this Reynolds number in correlating boiling heat transfer

(5.30)

data and get:

~ AP Y T
- A 620

For n-pentane, benzene, ethanol, and water this correlation reduces
to

02 A 0,33
Nv= 0005 K A

L4

(5.32)

Equations (5.31) and (5.32) gave good experimental fits for the data

of these liquids.
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6

Zuber and Fried [133] state that in pool boiling the Forster-
Zuber correlation <Fquation (5.31{) is valid for cryogenic fluids.
It is also shown that the correlation Equation (5.29) is identical

to Equation (5.32).

Summary

The fact that the analytical solutions are not consistent with
each other and do not completely correlate the experimental data indi-
cates that more work must be done in this field. However, the analytical
solutions are accurate enough to be used in indicating the behavior of
vapor bubbles.

The problems of non-spherical shape and non-equilibrium liquid-
vapor conditions should be considered in future analytical studies.

The best pool boiling heat transfer correlation equations are
based on the parameters involved in the bubble dynamics solution.

The equations governing bubble dynamics apply in the prediction
of the growth and collapse of vapor bubbles in cavitating flow. The
prediction of when a bubble will form is not possible from these bubble

dynamics equations,
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6.1

6.2

CHAPTER VI
Theoretical Investigation of Single-Phase
Conduit Models
Introduction
The purpose of this chapter is to give a detailed presentation
of the theoretical investigation which has been performed concerning
the dynamics of single-phase fluid conduit models. Linear and non-
linear treatments are presented with attention being given to the
effects of system accelerating and vibrating forces.
Exact Solution of the Linearized or First-Order Axisymmetric Navier-
Stokes Equations
In Chapter II it was revealed that the Navier-Stokes equations
may be linearized to give the form (see Appendix B for summary of

vector notation)

%.f .- % VP+ y;{g-v(v-v'})-w (Vx?'})z (6.1)

0

where v 1is the vector velocity given for an axisymmetric coordinate

system by
T ¥ +kvy (6.2)

with ¥ and kK being the unit vectors in the r and z directions

respectively. See Figure 2.1,
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The first order continuity relation for a liquid may be written in

vector form as

3P 2 - —
Co ’U: D
ot FRGTV . 6.3)

Now let's define a scalar potential @ and a vector potential @ such that

T=V§p+ VXY, (6.4)
If we take the divergence of (6.4) we have

VU= V'ZCP 6.5)

and also taking the curl of (6.4) yields

—

VT = W (W VY) = V(v-¥)-vVY .6)

The vorticity vector E is defined as

C= WV (6.7)

so that a and @ are related by
&= v(7-7)- VT 6.5
For axisymmetric flow E has only a component in the direction perpendicular

to ¥ and kK , thus in the © direction. It is necessary that @,have only

a © component also, as is obvious from Equation (6.8). We therefore write

V= oY (6.9)

and now since

_ v 2o 2. .
V=¥ S+ k 52 (6.10)
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we have from Equations (6.6), (6.8), (6.9) and (6.10) that

va‘if: g’; -V (6.11)

In summary then we see that the divergence of the velocity vector is
related to ¢ by Equation (6.5) and the curl of the velocity vector, also
referred to as the vorticity, is related to @, for axisymmetric flow, by
Equation (6.11).

If we take the divergence of Equation (6.1) we eliminate the vorticity

since the divergence of a curl is zero, and thus

%%17- - 2 v (vp)+ $ = V[ lv 3], (6.12)

Substitution of (6.5) into (6.12) yields
ava i 2 3 * 2 2
- = WAV V (6.13)
= QDV P30 VIVY) .

or

2 P
ot @,,+

wiH

- 2
% /

% L( (6.14)
From Equations (6.3) and (6.5) we have also

= - P,'Coz VZLF. (6.15)

Taking the partial derivative of (6.14) and substituting aP/3t from

(6.15) gives

é&ﬁé = L 2:7?q94_ q 1/0 é; A\ Cp

3{2 (6.16)
If we take the curl of Equation (6.1) we have
.._) _
9*%7—21 = -Vo gvx [ (VXV)Jz (6.17)
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or

QZ{V: -V ng [Vx (VZZ—/’_)]E (6.18)

or, after expanding the right side of (6.18)
2 J ey —
%;ZZV: 2% EV%VZZ//) ’V[V’ (Vzl/’)]_z (6.19)

From Equations (6.9) and (6.10) we see that 7 . (72@) = 0 thus (6.19) may

be reduced to

< ;— - <22

-_—= = )

=7 >\ C (6.20)
or

¥ AVl

— IV /.

<t (6.21)

Physically, Equation (6.16) is a viscous wave equation for plane or one-
dimensional waves, thus ¢ 1is a viscous plane-wave potential function.
Equation (6.20) is a vorticity diffusion equation.

Applying the Laplace transformation to (6.16) and (6.21) yields (assuming

initial conditions zero)

SO = £ VAP + L 255 vzz?\ (6.22)

0

and

(6.23)

where ¢ and { are the Laplace transformed quantities.

Solving Equations (6.22) and (6.23) by the method of separation of

variables (see Appendix C) yields
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Figure 6.1 Bessel Functions

where A and B are constants of integration and y is the separation
constant. Jg(fr) and Jl(Kr) denote the zero and fIrst-order Bessel
functions of the first kind with arguments Br and Kr respectively

(See Figure 6.1), Also

= A Shs
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and

1.

W/ . (6.27)
% ,Col-\L L//Bj)’o
Now that we have obtained ¢ and § we may obtain i? from Equation (6.4)
or
A -~
V=@ +vxVY (6.28)
=
where /' denotes the transformed velocity vector. Since
A
= Y‘-;—(2 Y 6.29
VY= rgi+ K (6.29)
and
L
VXW = =Y 22 + IK\{\ oY C\rw) (6.30)

Equation (6.28) becomes

e sl

Y oY

We may now write

Ve 2238 [eem(pns MTele™

¥ 272

and

Ve < ;L__?; %%i % = BV (8% + AKSu(E)] "

In Equation (6.32) and (6.33) we have implied the equality of the y's

from Equations (6.26) and (6.27), thus

2 s®
NG K24 SAr, = @4—-—-——-————-——. (6.

0‘2_’_ 1/3‘3}2 S
At this point let us calculate the pressure, thus from (6.3) and (6.25)

we have
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T Wy Yy W Wy

SP= —Q%&:’VZ(?:-?,,C} B(v2 {3‘) To(gv) e"? (6.35)

P= - 9_56928 QE g%) T (pY) € "/‘?

(6.36)

Equations (6.32), (6.33) and (6.36) are the simultaneous solution to the
first-order axisymmetric Navier-Stokes Equation (6.1), and the continuity
relation, (6.3). The constants of integration A and B and the separation
constant +vy are to be determined from the boundary conditions. The con-
ditions at the pipe wall are that the fluid velocities and pipe wall
velocities be equal and also that the pressure be continuous. In the
sections that follow, the boundary conditions will be applied for the
following cases:

A. rigid pipe,

B. elastic pipe with flexible walls,

C. elastic pipe with stiff walls.
The limiting conditions which apply to this solution are:

A. the fluid velocity at any point and time is much less than the

velocity of sound in the fluid, thus justifying omission of the

nonlinear terms,

B. changes in the density p are small in comparison with the
average density pq,

C. temperature effects are negligible,

D. the flow field is axisymmetric.

6.3 Application of Exact Linear Solution to Case of Rigid Pipe

We will now apply boundary conditions to Equations (6.32), (6.33) and

(6.36) for a fluid conduit with rigid walls. For this case we require
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that both the radial and axial velocities go to zero at the pipe wall.

Applying these conditions to Equations (6.32) and (6.33) yields

BR T(@%) 4 AY T (kve) = © (6.37)

and

B'{Jo(@%) + Ak Zlkw)= 0, (6.38)

Solving for A from Equation (6.38) and substituting into (6.37) gives

J1(B) _ __,YZ J:(kB)

(6.39)
3(p%) TolkT>)

The simultaneous solution of Equations (6.26), (6.27) and (6.39) will yield
the allowed values for K, B, and y. The exact solution of these relations
would be rather laborous; but, fortunately, we can obtain very good approxi-
mate values. To get an idea of the range of values we are working with,
consider first the case of no viscosity. Here the allowed values for Bnro

are

Bnro = 0, 3.8317, 7.0156, 10.1735 (6.40)

which shows that B 1is multivalued. Each value of Bn (except BO)
corresponds to a mode of radial vibration. The zeroth mode (8 = Bo) corre-
sponds to the primary or longitudinal mode of the conduit. The values of

Bn as given by Equation (6.40) are only valid for the case of no viscosity;
but, even so, an interesting observation may be made concerning the various
modes of propagation. Consider the value of the propagation constant vy

from (6.27) for the case of sinusoidal disturbances or

Y = Y

\
2
W__ /S (6.41)
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If v 1is imaginary then the wave will propagate with the velocity w/y.
If vy 1is real we have pure attenuation. We see then that the n'th mode

of vibration will propagate only when
w > Bnco.

The frequency defined by Bnco is a cut-off frequency below which no
propagation will occur for the n'th mode.

Considering again the case with viscosity we will now get a more exact
solution to Equation (6.39) for the zeroth mode than that of the inviscid
case. In our first analysis we found that By = 0 (zeroth mode). For this
more exact analysis we will assume instead that B, is very small so that
we may approximate J;(Bor,) and Jy(Byr,) by their small argument values.

Therefore assume

3, (Rae) & 3%/ (6.42)
and

TolfVo)= 1 . (6.43)

Substitution of Equations (6.42) and (6.43) into (6.39) gives

(2] ke 1

2
= 2 (6.44)
- AT
or, by substituting Equation (6.44) into (6.34) we have
S'L
,Y _ L2+ Y35 S l
' 2 3, (ovs) (6.43)

KeYo JolkoYs)

—
where now Kb k:%J s/vo. We have thus obtained a good approximate value

for the zeroth mode propagation factor. The accuracy of the approximation
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depends on the accuracy of the representations given in Equations (6.42)
and (6.43).
The zeroth mode transformed axial velocity and pressure may be written

from Equations (6.33), (6.36), (6.37) and (6.38) as

® /%z
Vo = B%E(Pom Bolbr) k) (o (6.46)

To(pols)  TolkeVo)

and
A, . e v,
R=-B(BE) e ) T e ¢ (6.47)

Applying the approximation of Equation (6.43) to (6.46) yields

Vio= 8%%1_ ___W(ET))%Q“"Z (6.48)
Jo (kYo

and similarly for (6.47), using (6.34) and (6.43) gives

P=- Bs BQQIY'Z (6.49)

If we consider the response of the zeroth mode velocity to a sinusoidal
pressure gradient then we find that the time domain velocity may be

expressed as

Va, = A_—_K { - 3-0("(7‘7@5;) <t
* E%QJ \35(ﬂ21_:b/{%) -

where the pressure gradient is

dP Lk
o5 ° Ke'"

T
For values of the parameter {bJ w/vy < 5 the velocity profile is essentially

parabolic while for values greater than 5 the profiles begin to look like
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those shown in Figure 6.2. Notice that in the figure the fluid near the
edges of the pipe responds more quickly than the fluid in the center of
the pipe. This phenomena is called '"Richardson's annular effect'” and is

discussed, for example, in Schlichting [2].

N
=X e

whe wief it * ‘;,? wi ot

——t

Figure 6.2 Velocity Profiles of Zeroth Mode
for Pulsating Flow in a Pipe

Thus far we have concerned ourselves with the discussion of only
the zeroth mode of propagation*, or, also called the fundamental or
longitudinal mode. What about the effects of the higher modes? The
calculations involved in working with the higher modes is very cumber-
some; but, fortunately, for most conduit dynamics applications the
effects of these higher modes appear to be negligible. For this reason,
all further discussions will deal with the zeroth mode unless otherwise

specified.

It is important to distinguish the modes of propagation being discussed
here from the concept of frequency modes. Each of these modes of pro-

pagation can, in general, have an infinite number of frequency modes.
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6.4

Derivation of Transfer Equations for Rigid Fluid Conduit
It is desirable to derive from Equations (6.48) and (6.49) a set
of transfer equations which will describe the average conditions at some
point z along the conduit in terms of the average conditions at z = O.
In the previous section we found the zeroth mode axial velocity and
pressure to be expressed as in Equations (6.48) and (6.49) or

%o’—: Bo% g\i" —————g‘;(('t:v\))z 8%3 (6.48)
o(KeYo

and

No
R=-fsB.C ] (6.49)

Since we have agreed to discuss only the zeroth mode unless otherwise
specified, we will hereafter omit the "o'" subscripts which refer to the
zeroth mode. If we average Equation (6.48) across the conduit cross-
section we have
V= BY g {- _M')_z e (6.50)
K% JolkYo)

and

— Nz

P= _Qos Be

(6.51)

Up to this point we have considered v, for convenience, to have only
positive values; but, in general, it will have both a positive and a

negative value. Positive values of vy indicate waves progressing in
the negative 2z direction and negative +v's indicate waves traveling
in‘;he positive 2z direction. Rewriting Equations (6.50) and (6.51)

to #nclude positive and negative values for Y yields
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Toef fo- 22N (R B (6.5

and

P=-ps 5 e Bze—lng . (6.53)

The boundary conditions which we wish to satisfy are
Vel,,= Vo
and

ﬁ|T¢’=o =k .

Substitution of these boundary conditions into Equations (6.52) and

(6.53) gives a pair of equations from which B1 and B, may be found.

2
Substituting these values back into (6.52) and (6.53) yields the transfer

relations
V= ‘Zwsl"’/@ - B suhre (6.54)
e
and
B= P, oshV2 - 2e Ve scwh /2 6.55)
where
Zes %% ' (6.56)

Equations (6.54) and (6.55) are then the zeroth mode transfer equations
relating the average transformed conditions at some arbitrary z to the

average transformed conditions at z = 0. We may rewrite these relations
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in another convenient form relating the conditions at some other position

2 where 2 1is oriented a +L distance from 1. This form is

Ta= Vi coshl'= P schl” (6.57)
Ze

and

Po= P eeshi™ 2.V sl (6.58)

It is convenient to omit the bar notation, which denotes the average
condition, while still keeping in mind that we are dealing with average
values,

The quantity [' appearing in Equations (6.57) and (6.58) is re-

lated to vy by

M=7vL_ (6.59)

and is often called the propagation operator. In Chapter II it was
noted that v, the propagation constant, consists of a real part and

an imaginary part, or
Y= Yeeite . (2.13)

We may therefore write
M= M+ ile, (6.60)

Figure 6.3 shows the variation of Ir with frequency number (wL/co)
for various values of the damping number (vL/coroa), Figure 6.4 shows
a plot of the ratio c/c0 versus frequency number with damping number

variable.
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6.5

We will now explore the application of the transfer relations in

solving typical problems.

Application of Rigid Fluid Conduit Transfer Equations

Now that we have obtained a set of relations describing the average
transformed conditions at two axial positions in a rigid fluid conduit,
let us consider the use of these equations in solving two example pro-
blems.

Example Problem I

Consider a fluid conduit with length L and inner radius (08
terminated at end 1 by a constant pressure source such as a large

reservoir; see Figure 6.5. The other end of the conduit is terminated

~
v

co~s+nu+' -Pfess.

® @

Figure 6.5 Diagram for Example Problem I

by an oscillating piston. We desire to obtain a plot of the pressure
ratio Pa/pcoVaverSuS frequency, where 4, and v, are the disturbance
pressure and velocity. We recognize that P, = 0 since the reservoir

has a constant pressure, hence, no disturbance pressure. Applying the

transfer relations (6.57) and (6.58) to this case gives
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and

thus

Equation (6.61) represents

= -2V sawhl

V2= T/[COSh/—’

2%
il Ze Jraul'l B

]

From linear transform theory we know that

where ¢ 1s the phase of P, /17, evaluated for § =

Pl

o

P

2

scnw(wt+ ¢)

S:du)

jw.

(6.61)

the Laplace transform of the ratio _/v,.

(6.62)

We can Lherefore

find the information desired by calculating |P3/p;|S=jw. A plot of this

ratio is shown in Figure 6.6.

Example Problem II

We will now investigate the response characteristics of the volume

terminated fluid line shown in Figure 6.7.

Here we have a conduit

terminated at one end by a sinusoidal pressure generator and at the

¥

.l

0 )

£y P, swwt

Genevator

Figure 6.7 Diagram for Example Problem II
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other end by a volume receiver. We will treat the volume as a pure

fluid capacitor so that from Equation (2.35a) we have

Vo= Cus P (6.63)

For this case it is convenient to write the pressure transfer equation

in an alternate form given by

P= Pcoshl+ Vo Ze sahl™ (6.64)

Substitution of (6.63) into (6.64) to eliminate V, yields

2

P= P icoshl™+ CoZ smh/’g

or

P 1
P T coshlM Cu'Ze siwhl?

(6.65)

Evaluating (6.65) for S = jw and calculating the absolute value of
the resulting complex number gives |P2/P1|.

The example problems presented here are very simple and the cal-
culations involved are easily achieved with a digital computer. More
difficult problems involving frequency domain calculations involve
very little more effort and are also easily solved with the aid of a
computer. The utility cf these equations for use in sclving frequency
domain problems cannot be cver emphasized. An aid which may be fruit-
fully employed in problem formulaticn is the matrix method discussed

in Section 2.4.
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6.6 Conduit Wall Effects

The purpose of this section is to outline the analytical approach

to the problem of determining the effects which nonrigid walls have

on the transmission properties of a fluid conduit.

Basically, there are four types of conduit walls:

a)

b)

c)

d)

Rigid walls - Those walls which are assumed perfectly rigid
and do not give under the influence of a pressure force.
This type of wall has an infinite radial impedance, i.e.,
'P/vr = o,

Pressure release walls - Those walls which just contain the
fluid but exert no force on the fluid. This type has a
zero radial impedance.

Elastic flexible walls - Those walls which give under
pressure and have some finite radial impedance but do

not propagate a disturbance in the axial direction.

Elastic stiff walls - Those walls which have a finite
radial impedance and do propagate a disturbance in the

axial direction.

We have already developed the mathematical relations describing

the pressure and velocity for a rigid fluid conduit. We now proceed

with the description of the elastic flexible and elastic stiff cases.

Elastic Flexible Walls

If we are studying the dynamic characteristics of fluid-filled

elastic tubes, such as rubber, where the major effects are those due

to tube inertia and tensile stress in the wall, then the equation of

motion for the tube is [45]
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Q{:h dz—g’r-#— SY‘(hEﬁ/ﬁz)=7Q (6.66)

dt>
where
h = tube thickness
ro = tube radius
Et = Young's modulus for tube material
ér = wall radial deflection
P = fluid pressure at tube wall

Applying the Laplace transformation to Equation (6.66) gives

Och s gf + Sf\v (ha/mf) - (6.67)

or

é\r - Pe ’ (6.68)
Ouh s*+ hEe /32

In terms of the radial velocity, (6.68) becomes

Ve = s
Cch S*+ hEc /22

or

P*: 2 P&A s+ hE‘t/foz
Vet s

Since the radial impedance for the pipe wall must equal that of the fluid

at the wall we may now write (assuming zero impedance external to the

pipe wall) from Equations (6.32) and (6.36)

@_5 Jo(PYo) Ohs?p h e fro?
C TJiepre) s

(6.69)
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or

JoBV) _ Rehs?s hEe 12
8% J(a%) B RS> ' (6.70)

Using (6.70), it is possible to solve for the allowed values of B
which will depend on the parameters of the right side of the equation.
Knowing B, the transfer equations could then be derived as was done
in previous sections.

Elastic Stiff Walls

The approximate equations of motion for a thin-walled pipe as

given by Lin and Morgan [29, 46] are (neglecting rotary inertia)

228 _ &b (7% ia.frg
Ch 55 - (4_)3%9%2 Y% o2

2< —‘_ —~ S;
nh S5 Koh 3, 225 Bl S Y Al bl

and

= f) 53; + K€l g&’ gz =°
- 2

where the tube axial and radial particle displacements are given by

the perturbation equations
Salnzt)= Sa@t)+ (o) 3(z4)

and

Selezt) = Selz)).
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By transforming these equations of tube motion and assuming solutions

S 2, E%Z

S efﬁ. 2

¢ o'*

of the form

gﬂ\> ‘Q,/JD
V) I

>
i

where " indicates transformed quantities, we have, after eliminating
bz and
o 8o

Svo a3(5)')(¢) = az)%/eoéz

,/
On(5,e) = 5— (hz) '\QL’ + ‘1‘2 + (/l ;
@ Valy) Y (% - 1)

0 h’Cp®

NE ore

- hfav,

Ao = -————-—i /zt
and Pﬁh Cp
2 Et

7

Solving for the radial tube impedance gives

_E}; _ 2 _ @3(9;'?1/&)

—

S& W s
From Equation (6.69) we have seen that the fluid radial impedance at

the wall is given by

P RS 20

-

Ve @ j,(@\p)

In order for the radial impedance to be continuous at the wall, we

must have the tube and fluid propagation constants equal = ) and
q Y = Yt
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or

_QLS_ jv(En)__ Qg(s,'/e)

b oJer) Tsan (o7

Solution of (6.72) will yield the allowed values of 8.

At this point there are two ways in which we may solve for Vz.
We may either neglect the pipe axial motion and assume that the fluid
axial velocity is zero at r_ Oor we may assume that the fluid and
pipe axial velocities are equal at the wall. The first approach is
by far the simplier of the two and would probably not give great errors
except in cases where one end of the pipe were free to move and also had
a high impedance.

The major effect which flexible walls have on the transmission
characteristics in a viscous fluid is to alter the propagation velo-

city as depicted in Figure 6.8. Also see Figure 2.16.

ist MODE

RGID PR
e — - ELASTIC FLEX\BAE PIPR
e ————— — BLASTIC STIFE PPy
———————— PR fm\l.. RELBALE WALLS

Se——e

ey e

FREQUENCY

Figure 6.8 Phase Velocity Versus Frequency for
Several Types of Conduit Walls
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.7

Effect of Nonlinear Terms

In Section 2.7 we discussed, to some extent, the problems associ-
ated with analytical investigations of fluid conduits where some con-
sideration must be made of the nonlinear terms of the equations of
motion, At this time we will present a solution of the governing
equations for Case 1 of Section 2.7, i.e., the case where there is
a large steady flow component but the perturbation or unsteady flow
components are small. We assume for the fluid velocity (axisymmetric

flow)

.—U-—=- )Y—U:m'\- ‘K(v-%o"‘?)él);- ?)_:-‘-{- ;T

where v o represents the steady axial velocity component, v,
z
1

represents the radial unsteady velocity compconent and v, is the
1

axial unsteady component. Go is the steady vector velocity and

;1 is the unsteady vector velocity. Making our usual assumption

of a semi-compressible fluid, i.e., a fluid whose density is time
but not spatially dependent, we may write for the equation of motion
(calling Voo simply vo)

IV, U, — —
2 e Y TS

(6.73)

and for the continuity relation (including equation of state)

OF 2 7. 5= _
3{+€°'€° V-vi=o, (6.74)

It is convenient at this point to separate the velocity as
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T= VY + XY, (6.75)

where ¢, represents a scalar field and ﬁl a vector field. If we
now take first the divergence and then the curl of Equation (6.73)

we have, respectively

v, i 2 —
aV A ')- V¥, -g—?J'VZ(V»b‘,) (6.76)
and
SV T _
Ry +V><(U; 9%)- ))‘V)([Vx(‘w‘v‘,)] (6.77)

or, since 7 . ;1 = Veqh and 7x§1= -72¢1,(ﬁ1= ® ¥,) we may rewrite

Equations (6.76) and (6.77) as

8)

~J

a 2 — 2
;C 'y V- (vs %%): —veﬂ £ 2 v4(7¥) (6.

and

;:b'*_v ( 22> VY. (6.79)

At this point we must make some considerations of the terms in Equations
(6.78) and (6.79). Physically, ¢, 1is a scalar potential for the plane
wave propagation and ¢, 1is a function associated with the vorticity
field. In order to be able to easily work with the terms 7 . (VOBVl/BZ)
we need to assume that v, is constant even though mathematically it
is some function of r.

What we are going to do is assume that vy is constant over the

cross-section so far as Equation (6.78) is concerned. Since {, 1is
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associated with the vorticity, this indicates that it will have a
significant value only near the wall where we can assume v is
zero. Thus, so far as Equation (6.79) is concerned A 0. We

may now reduce Equations (6.78) and (6.79) to

Sxp{ égg@ - 49 14_9;
S5t + Vo 52 © ?o t 3 (V%ﬂ,) (6.80)
and
L "
= YV, (6.81)

Applying the Laplace transformation to Equations (6.74), (6.80) and

(6.81) and solving’we obtain
P ’}/2
4 = 3en) | A p ™ {

and

"

2 g, eﬁézg

W = Tw0f ge

where & and §, are the transforms of ¢, and {,. Also v and

Yz are solutions of

Yi 2/% - @2_ > -0 (6.82)
‘%+§-’V _';i‘-+21/'

and furthermore
2 2 S
K=’Y"‘/g)-o
Now for the transformed velocities, we have

Ve = -B3(pY) SA,Q'@. Aze'/z‘?g)w‘ J(N)E'/, Bﬁqf'f '}/2328/'4? (6.83)
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and

Vo= Jo(pr) §A.e”"i,42e“/2§?+ ksactr)ge,e“@ sze"?g . 68

Zeroth Mode Transfer Equations for Rigid Pipe

We want to proceed now to develop the transfer equations for a
rigid pipe which has a steady flow component v, plus a perturbation
component vl(t) which is an average for the cross-section. For the
zeroth mode of propagation, we proceed with the application of boundary
conditions to Equations (6.83) and (6.84) which require the velocity
to be zero at the pipe wall, 1If this is carr

nin
T pap -

identical to those of Section 6.4 given by Equation (6.44) thus

2 T;(KYB) ?
27 K6 Tolkn) 7

(6.85)

¢ =

Substitution of Equation (6.85) into (6.82) yields a quadratic in

v (zeroth mode only)

VS NI TSN QUPYS SCCHNN S S S G
Ko Jo(kYo) UL BV | Er B

L4

Solving for vy from the above equation gives

,{h"- - bt Igz‘lac] - ')/at'}/b

where

o= {i— 27, (kY) z
Ko Jo (ko)
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e
b= {ﬁo‘/ﬂ 4/37fz

If the relation for axial velocity is averaged over the cross-section

and

and the averaged pressure is calculated from the continuity relation

we obtain

y, Wez

V= 62,63 ;!+ C. €

and

P= —@—éﬁz%%c,e“"% Yie™.

Applying the conditions V,(s) and Pl(s) at z=0 leads to the

transfer equations given by

Vato)= e%L Vies) cosh Vol - VLZ(ZS)’ sewh oL - %f_'sw/»’}ﬂ} (6-86)

Fats) = e’mg P [-'{3 sah VoL + Cosh %L} -
75 (6.87)
- 2;\/.(5)[_’1/0« CoSL '{bL + ’)/b Sa'A)A ')[bl_]+ Zé[%i SL'NA '/bl +'{€Q>5L’{5L]
where
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6.8

Equations (6.86) and (6.87) are now the desired transfer equations
relating the variables of a four-terminal fluid conduit such as
shown in Figure 2.5. It is important to note that if we let vo=0
then these relations reduce identically to the standard form as
given by Equations (2.23) and (2.24).

Figure 6.9 displays a plot of the frequency response Log
[V1(o)/Vl(L)] for a pipe with constant pressure at z=0 and a
"disturbance generator” at z=L. V, (o) 1is the transformed velo-
city at z=0 and V,(L) 1is the transformed velocity as z=L.
Note that the greater UN (mean steady velocity) the smaller the

disturbance effect.

Effect of System Body and Vibration Forces
Consider a typical fluid system, such as the fuel system of
a rocket, which under normal operating conditions has imposed
accelerating and vibrating forces. We will adopt, for convenience,
a frame of reference which moves with the motion of the rocket.
Listed below are some of the accelerating and vibrating forces
which may be present:
1) A body force on the entire system due to the
acceleration of the rocket,
2) Vibrations of parts of the fluid system relative
to the motion of the entire rocket.
The analytical procedure for fluid conduits in the above cases

is ocutlined below.
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Body Force on Entire System

Now consider the effects which system body forces have upon the
fluid contained within the system. Writing the first-order equation
of motion for a viscous fluid, including a body force term, we have

in vector form

%Z _F_ Yi>+ o %V(V?‘/")-Vx(vx'?ﬂ}

G > (6.88)
where F represents the vector body force acting on the fluid and
may be a function of both space and time. Assume that v 1is repre-
sentable as
V=Y + XY (6.89)
also
GV = VZCP (6.90)
and

VXV = V(V-TV-)— a2 (6.91)

Taking the divergence of Equation (6.88) gives
5—‘-‘7—%- - % flv F-v-(v)+§vv { V(V-?)Z

or, introducing Equation (6.90) yields

aVY 1 (o= 2
L AT
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Similarly, taking the curl of Equation (6.88) and substituting Equation

(6.91), we have (assuming axisymmetric flow)
z T —
WY . yviwr P+ WEE, (6.93)
Co

Only if we can now represent F as
F= Ve + Vx Vg (6.94)

are we able to obtain a solution to Equations (6.92) and (6.93) in

this manner. If F 1is not representable as in Equation (6.94) then

we musSt use some other method. We are mainly interested in the case
where F represents some time varying body force. 1If F 1is only
time variant then it may not be expressed as in Equation (6.95).

For the case where F is only time variant we may easily

obtain a solution for the zeroth mode of propagation. The resulting

transfer equations are given by

RG) = He) cosh - 'Zch/,'(s)— ACS)/s] sewh

and
Valo) = [Vits) - AlS)/s | cosh [ - %fs_) schl+ A_;s_)
c

where A(s) 1is the Laplace transform of the system axial acceleration

resulting from the time variant body force F.

Relative Vibration of Parts of Fluid System

The most convenient method of solution in this case is to account

for the vibration effect by introducing it as a boundary condition on
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the fluid and omit the body force term.
Consider a fluid conduit in which the walls are undergoing some

axial motion as shown in Figure 6.10. vc(t) is the velocity which

Velt)
Vi) ' V2lt)
S |
P ) | P (t)
2=2, Z=2,

Figure 6.10 Fluid Conduit With Axial Vibration

the conduit wall attains as a result of the time variant body force.
In order to obtain a solution, we will apply boundary conditions to
a general solution without body forces in such a manner that the fluid
has the velocity vc(t) at the wall. Thus, we are not considering
there to be a body force but rather a boundary motion.

In order to avoid some mathematical difficulties, we will only
discuss the zeroth mode for a rigid pipe at this time; thus we may

reduce Equation (6.88) for this case to

?__7{-_1QP+'); 92-4. _La_wz

= - =

ot p A ¢ Y or (6.95)

We will assume that for this mode the pressure is only a function
of axial position so that in Equation (6.95) it represents a forcing

function. A general solution in the Laplace domain is

Vinz,s)= h(zs) &(Lﬂ@)—é %ﬁ . (6.96)
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Applying the boundary condition V(ro,s) = Vc(s) gives

W) + (i/e,s) ° 852

h(2s) = (6.97)
.jb(ixz‘%ég)
Substituting (6.97) into (6.96) yields
Vin2s)= Vi) Fo(5Y) y A £P§23§I2 - 15 , (6.98)
TJulsr)  PBS 92 L eV

We may now derive our standard transfer equations. If we average

Equation (6.98) and combine the result with the continuity equation
averaged over the cross-section, we obtain a second-order ordinary
differential equation whose solution gives the propagation constant

as

. G NEY
Y—{1_ 27 0] %'/25 s 7/7
- T Yo Jo(EYe)

which is almost identical to the form given by Equation (6.45) for

the zeroth mode. The corresponding transfer equations are
V2($) = Vi(s) CoS)ﬂ'}/L - izg_s_) S %'{L—} TZ(S)'F(S) [i._ cOsL\ '}/L] (6.99)
c

and
R = Pies) cosh¥L - 2eVies) swhyL+ Ze s Hts) swhVL (6. 100)

where

§{§)= 2:31<§Y3>
Wo Jo(BY%)
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and ZC is defined by Equation (2.26). Notice from Equations (6.51)
and (6.52) that the effect of the system adds to each of the standard
form transfer equations a term which is porportional to Vc(s). If
we put Vc(s)=0, then the equations reduce to the standard form for

a conduit with no vibration

Example Problem III

Let us now apply the above transfer relations to the case of a
rigid conduit which is closed at one end and has a constant pressure
source at the other end. We also specify that the conduit experiences
an axial sinusoidal vibration such that its transformed velocity is

Vc(s), Figure (6.11)

..,
Ag}ra/“ui=2£

L » Vo= Vs scvwt 222,

Figure 6.11 Diagram for Example Problem III

Applying Equation (6.99) and (6.100) in this case, we may obtain
()
Be 7. (1-%sy) fanvh ™ (6.101)

Equation (6.101) is now the transfer relation for the ratio of trans-
formed pressure at the closed end to the vibration velocity. This
example is similar to the problem of a vibrating piston in one end

of a stationary pipe with a constant pressure at the other end.
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Example Problem IV

Consider the fluid conduit shown in Figure 6.12, For this pro-
blem we have a conduit which is vibrating in the axial direction with
a velocity V.- An orifice is situated in one end of the conduit.
There is a constant pressure reservoir at each end with Py being

greater than and of such a magnitude to produce a steady flow

P3
velocity v, when there is no line vibration. We wish to determine
the pressure perturbation at point 2 due to the vibration of the line.

Writing the matrix representation for the transformed pressure

and velocity perturbation terms for the conduit we have (p1 = 0)

R “2 siwh Ze $es) swh”
V2 cosh " L5y (1= CoshT)

\

T

-l:/@
Vot Vs

f£= Co~s£

Figure 6.12 Diagram for Example Problem IV

Assuming the orifice to have only a resistance to the perturbation

terms we may write

p1'= ‘2(‘&?"&:}
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where R = 2Kvo. VC is the transformed vibration velocity. Com-

bining these equations leads to the relation

= A- {s)
LoVe ) %ke . Olo
Reto Ve Q75--+ 3352 cothll

If R 1is derived from the steady flow orifice equation, then

o &[4 et

where Apo is the pressure drop due to the steady flow velocity

V- Table 6.1 shows some typical valuee of R for watcr., Alsc
c AP (psi) dc/do R(BEL=SEC
d o ft
.6 100 4 3.64
.6 100 2 . 882
6 100 1.5 457
.6 500 1.5 1.02

Table 6.1 Typical Values of R for Water

Figure 6.13 shows a plot of IPz/pocoVCI versus N_ (frequency number)

f

for various values of ND (damping number) and R where

- wt
Ne= &

and

_ ol
ND_AQ"

141



9oue3lsTsay pue zaquny Surdweq JOo soN|BA SNOTIBA
103 1aquny Kouanbaig uo otiey 9pnitiduy 2inssaig Jo souspuadaq ayy £1°9 2In31J

)

\
S

i R

i

T

;
i
e

"
-

|

1o,

'

AL | |

-

i

i

i

’»
". .’]’
I

142

P
g

i

i

‘ AP
D [ [
i . : H L
. ” B i




6.9 Lumped Parameter Models
In Section 2.5 we discussed the applicability of lumped parameter
models in solving conduit problems. It was stated that these models
are valid if the frequencies involved are less than about one-eighth
of the first critical frequency of the lumped element. This restriction
suggests a very convenient method of obtaining such a model if the

corresponding distributed parameter model is known.

Similarity Between Lumped and Distributed Models

Consider now the transfer relations (2.23) and (2.24) for the

case of low frequency, i.e., frequency low enough for a lumped model
to be valid. This means that Yo < /16 so that we may approximate
cosh YbL and sinh yOL by the first terms of their series expansions,

thus

Bes) = 9(5)<i+ %‘Z) AR (6.102)

and

Py I

= Tis ( +-—>— — fe).

Tas) = Wies) (4 2 % (6.103)
By a critical comparison of Equations (6.102) and (6.103) with the
relations for the fundamental lumped model, Equations (2.41) and

(2.42), we see that by neglecting some of the small order terms

the equations will be equivalent if

$Iv + R)= Ze

(6.104)
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and

SCr= L.
Ze
, 2
We have seen, Equation (2.26), that ZC = 0,% yo/s, thus from

Equation (6.105) we must have

r SL SL

veiffs 0Lt X

SGr

which is correct, see Equation (2.35a). Considering now Equation

(6.104) we see that we must have

ST + Row) = Poffs'f L,

Using the value of Yo for the two-dimensional viscous model,

Equation (6.45), we may rewrite Equation (6.106) as

STy +Rw) = b5t :

1_ 23'(%“’) }
Yo Jo(EYp) )

If we expand the right side of Equation (6.107) in a power series

we have

ST+ R)= psL §44 £+ ﬁ..,g.

2.:Y((§Y;)
Yo 3b(§TB)
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(6.106)

(6.107)

(6.108)




From Equation (6.108) it is evident that we must have
2, 13
Ror) = (%SLE-“ 3430 ? -

We have now shown that the transfer equations for the fundamental
lumped model and a low-frequency form of the distributed parameter
model are approximately equivalent if R(v) 1is given by Equation
(6.109). This result suggests that we may obtain lumped parameter
models from all of our existing distributed parameter models by

simply writing them in approximate low-frequency form. This will
yield forms which are mathematically much more tractable and which

should be more easily inverted back to the time domain.
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7.

1

CHAPTER VII

Theoretical Investigation of the Onset of Cavitation

Introduction

When the stream pressure of a flowing liquid is reduced below
the vapor pressure, it becomes possible for a bubble to grow from
a small nucleus within the liquid or at the liquid-solid boundary.
The experimental evidence available (Harvey, McElroy, and Whiteley
[60]) indicates that permanent gas nuclei are necessary for the
onset of cavitation. These may, or may not, have come out of
solution on solid nuclei. A third possibility exists when the
liquid contains solid particles that are not wetted by the liquid;
in this case, it is feasible that gas-free cavities may develop
on what are essentially solid nuclei. Whatever their mode of
origin, the bubbles will certainly gain vapor from the surrounding
liquid as they grow.

The experimental cavitation studies by Hammitt [91], Ruggeri
and Gelder [87], and others have proved that the formation and/or
collapse of bubbles, which were produced by decreasing the stream
pressure, can be detected by audible means before they become
visible. The tunnel operating conditions had to be changed once
an audible sound was detected before the bubbles could be observed
with the eye. This indicates that bubbles, formed by decreasing

the stream pressure, are very small during the early stages of
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2

growth, Therefore, we believe that a closer look should be taken
at the equation which describes the growth of small bubbles.

The rate of growth of a bubble, once formed, is controlled by
the surface tension, the liquid inertia, the liquid viscosity, and
the difference between the pressure within the bubble and the ex-
ternal pressure (pressure within the liquid). In the initial stages
of bubble expansion, the growth is slow but it is accelerated with
increase in bubble size because of a reduction in the surface tension
force and the decrease in stream pressure (for liquids flowing in
conduits). When the rate of growth becomes appreciable, however,
the temperature and hence the pressure within the bubble drop and

the rate of growth is decreased.

Hydrodynamics of the Growth of Small Bubbles
During the following discussion we will consider a spherical
bubble growing in a viscous, incompressible liquid. The growing
bubble will generate a velocity field within the liquid which,
in turn, will generate a stress field tending to retard the bubble's
growth. The assumption of a spherical bubble is valid for small
bubbles since the force exerted by surface tension is large. 1In
order to further simplify the problem a model with constant fluid
velocity and no turbulence will be assumed. This model is similar
to the mathematical model being used in our studies with the Bubble
Chamber. However, in order to study some of the causes of cavitation
we must focus our attention on bubbles which are invisible to the eye.
The spherical symmetry of the situation makes it convenient to

choose a spherical coordinate system with its origin at the center
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of the bubble. The velocity field generated in the liquid by the
expanding bubble will have only a radial component Vr(r,t) with
respect to the center of the bubble, where t 1is the time measured
from the instant of bubble formation. The pressure p at any point
in the liquid is also a function of r and t. Therefore, the
Continuity and Momentum equations may be reduced to

é{!} + .EL Vi =0
aY Y (7.1)

and

Vi Vel 2P (W) 2
SRR LN

In Equation (7.2), is the density and ™ the viscosity of

L
the liquid. Both are assumed uniform and constant.
At the bubble wall, the liquid velocity must equal R(t)

where a superimposed dot denotes ordinary differentiation with

respect to time. Thus, integration of Equation (7.1) yields
1 =7
Vetnt) = & [ROJ RE) (7.3)

If we substitute Equations (7.1) and (7.3) into Equation (7.3)

and integrate from the bubble radius to infinity, we obtain

RR+ 2 [Q]zs ‘P('ew’%)_— s (7.4)
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The stress components for the velocity field given by Equation

(7.3) are [135], (for the liquid outside the bubble)

o= —pirit) - e RR?,

Goo= G4 = —{JCW&H-Z—;—“-!-" RRZ, (7.5)

049¢= %r: G\"Q:O.

Within the bubble,

Cer= Coo= Cpg = —('R"P%)s

(7.6)

GZ@ = (E5? = Grp = 0O 5

where pV is the partial pressure of the vapor and pg is the
partial pressure of an inert gas.

The stress component Grr must experience a jump of magnitude

20

R~ at the bubble wall. Comparing the first of Equations (7.5)

with the first of Equations (7.6), we find that the pressure just

outside the bubble wall is given by

PRroyt) = f+ 5 - N"fR%R . (7.7)

If we substitute Equation (7.7) into Equation (7.4) we obtain
an ordinary differential equation for the bubble radius as a function

of the pressures inside and outside the bubble. This equation is:

14

YR _ B+R-te)
R Cu

.

A2
R+%R+— +

~A

2
R

(7.8)
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Discussion of Equation (7.8)

Equation (7.8) is similar to the well-known Rayleigh [98] equation.
Several solutions to Equation (7.8) exists under a variety of assump-
tions. However, most of the existing solutions are applicable only to
bubbles of fairly large size. We are interested in bubbles from the
time they are formed until they become visible. Therefore, we must
examine each term in Equation (7.8) to determine its influence on the

bubble growth within this time interval. Listed below is a discussion

of each term in Equation (7.8).
(a) The inertia and surface tension terms are significant 1
during the initial expansion of the original bubble {

nucleus [109].

(b) The viscous term is significant during the early stages
of growth in a highly viscous liquid.

(c) The vapor pressure term usually decreases as the bubble
radius increases. Since the growth is fairly fast, this
term might be assumed to remain constant and equal to its
value at time, t, equal to zero.

(d) The inert gas term may be neglected if the liquid is
nearly free of dissolved gases,

(e) The liquid pressure term will decrease with time and
will depend upon the test section shape and stream
conditions at the inlet to the test section.

Each term in Equation (7.8) appears to be important during the

early stages of growth. Thus, we are unable to linearize Equation

(7.8).
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7.4 Previous Solutions for Equation (7.8)

The influence of time-dependent factors on bubble growth has
been investigated by Noltingk and Neppiras [62], [63], Parkin [72],
and others. Noltingk and Neppiras solved Equation (7.8) on a
differential analyzer for the growth of an air bubble in a fluctuating
pressure, p(t), field. They neglected the viscosity term in Equation
(7.8) and assumed the inert gas within the bubble to undergo an
isothermal expansion. The pressure outside the bubble was repre-
sented as one cycle of a negative sign function. Noltingk and
Neppiras found by trial that wide variations in boundary values of
radial velocity, R, (at R = Ro) produced insignificant changes
in the contour of the R-t curves.

In another investigation of the effect of time, based on
Equation (7.8), Parkin [72] defined the onset of cavitation to be
the bubble growth to a particular radius of 0.10 cm. Parkin neglected
the viscosity term in Equation (7.8) and assumed the inert gas within
the bubble to undergo an isothermal expansion. He also assumed the
surface tension to vary linearly from zero to its value of o. This
change in surface tension was assumed to take place during the early
stages of bubble growth. The pressure, p, within the liquid was
represented by a parabolic pressure function.

There has been no attempt to correlate solutions of Equation
(7.8) to liquids flowing through conduits. Thus, we believe that
Equation (7.8) could yield some useful results in predicting the

effect of pressure distribution on the onset of cavitation.
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6

Solution to Equation (7.8)

Before a solution to Equation (7.8) can be obtained it will be
necessary to determine the boundary conditions. This will have to
be done by trial because no exact method exists for determining
the initial bubble radius.

The initial radial velocity, Ro , will be zero at some
particular value of the external pressure. This value of the

external pressure may be determined by

o) = ), + 7059' %‘: )

Thus, the initial bubble radius, Ro , 1s the only unknown since

P can be estimated by Henry's Law, p
8o 8o

approximately equal to the liquid vapor pressure.

= HC , and Py is
o

The major problem is that of determining the correct value
for R, Parkin [72] assumed a value of 10_3 cm for Ro' The
correct value or values for Ro may be determined by trial by
selecting RO so that R and ﬁ can be satisfied once the

bubble becomes visible.

Pressure Inside Bubble

The pressure within a small bubble will undergo an expansion
as the bubble grows from an invisible size to a visible size. This
expansion will be neither isentropic nor isothermal. However, if
we solve Equation (7.8) first by assuming the gaseous mixture to
undergo an isentropic expansion and second by assuming the expansion

to be isothermal, then the actual expansion should yield results
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which are between these two assumed processes. The actual expansion
will probably follow a polytropic process. However, the polytropic

exponent is unknown and must be determined by experimental methods.
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8.1

8.2

CHAPTER VIII
Theoretical and Experimental Investigations
of Bubble Dynamics

Introduction

The purpose of this chapter is to present a complete review of
what has been done in the bubble dynamics investigation and to acquaint
the reader with the final objectives of this investigation.

First the analytical work already done is considered. Then experi-
mental methods for verifying the theoretical work are given. Finally,

the possibilities of future investigations are reviewed.

Analytical Solutions of Bubble Dynamics Problems

A. Bubble growth in a superheated liquid has been considered in
references [99], [100], [101], [102], [103], [104], [105], [106], [107],
(1087, [109], [110], and [111]. For the case of initially uniform super-
heat in the liquid and with the assumptions cf Section 5.2, the analytical

solutions for the asymptotic growth rate of a vapor bubble has the form:

R= At'/l, (8.1)

The coefficient, A, is a function of the physical properties of the
system and also contains a numerical constant depending upon the refer-
ence under consideration.

The analytical approaches of Forster-Zuber, Plesset-Zwick, and

Scriven are compared in Figure 8.1. This data was taken for a vapor
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Zuber

8r e -~ Plesset and Zwick

- Scriven

t, milliseconds

Figure 8.1 Analytical Solutions Compared
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bubble in liquid nitrogen superheated by 3OF at atmospheric pressure.

For these three solutions the equations are:

Forster-Zuber

R- AT Ca Q7gzy (8.2)
Ly p,
Plesset-Zwick
2 ATCPL P (8.3)
) t
R-1# L
Scriven
R= 2@17%5' (8.4)
where B was solved by numerical integration from the equation:
AT ~ 2¢ 6’
= d2g%exp(p™+2¢€ ’Z X %exp \—x* ———)dx
Ru4'%AT«ﬂ—QM % é P@ €> P( x
?‘-CPL QLCPL €

and ¢ =1 - /p; . For the properties listed below B was found
Py’ Py,

to be 3.4.
Properties Source
T, = 142.255° R Ref. 136
T, = 139.255° R Ref. 136
PL = 14.7 psia Ref. 136
CPL = .496 Btu/1b° R Ref. 137
Cyp = -258 Btu/1b° R Ref. 138
PL = 50.506 lb/ft3 Ref. 136
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Properties Sources

.2875 lb/ft3 Ref. 136

7~
li

2.2025 x lO-5 Btu/ft-sec’ R Ref. 137

The analytical approach for this investigation will be Equation
(8.1) and the value of A will be one of the primary results to be
obtained by experiment.

For the present problem the analytical solution to the bubble
growth is not considered in the range where the bubble can not be
studied adequately from photographs. Absolute verification of the
analytical results in the early growth range is non-existent at pre-
sent. The practicability of study in this range has not been con-
sidered here.

B. Bubble collapse in a subcooled liquid was considered in
references: [101], [116], [108], [117], [1187, [119]. Bubble collapse
will be considered in two parts:

1. When the subcooling of the liquid is more than 35° F the
collapse will be considered to be controlled entirely by
inertia forces and heat transfer effects will be neglected.
The Rayleigh equation, (5.23), becomes valid.

{ ) .
3P, (Eka) i; %/
t=Ro gpw . (= (R/RO)S ( Ro) .

(8.5)

The arbitrary 35° F subcooling must be verified and this is
one aim of the experimental work.

2. For subcooling less than 35° F two methods of predicting
collapse are available. Since work in cryogenics is con-

cerned primarily with the case where a liquid is usually
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only subcooled by a few degrees, it seems that a review of

these two analytical approaches is necessary.
Plesset and Zwick [101] obtained the system of equations shown
below for the situation in bubble collapse where both heat transfer

and inertia must be considered.

APl s

7
Y(e)P-1 = 7%5 o(u- v)"zdv (8.7)
Boundary conditions:
Po)=1 | Py= 0, ©60)=0 (8.8)
where
- 3 R = Radius at start of
13- (R/Eg) ) © collapset ware
C LV Pov Qo an 2 Q) Eq( )d
- 3K (w)’“z(_f??,)%a
u dire)
e,(T) _ Rlfe-B) L e e dv__ dv.
s R ATERY

The system of Equations (8.6), (8.7), and (8.8) was solved by
a numerical integration technique in Appendix II of this reference
f1o1].

Florschuetz and Chao [116] obtained the same equations but put

them in an altered form. Their equations may also be solved by nu-

merical integration methods.
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These are the systems of equations necessary to treat the ana-
lytical approach to collapse in slightly subcooled collapse.

C. Bubble growth in a nonuniform temperature field was con-
sidered in references [106], [120], [1227], [123], [121].

Zuber [106] offers the simplest correlation of data with the

equation:

(Th = Teat) Cace _ )Mt
R Ly ev -iTYK{: 2#Q.(7Lo-1}ai)

9y is the heat transferred from the surface to the liquid. This
equation is convenient because of its simplicity. Physically 9
is a measure of how nonuniform the temperature field may be.

If it is possible to get a good correlation of data with Equation
(8.9), it may be necessary to assume a linear temperature variation

from the heating surface of the form:

M= (T Toe) (4= § 25) + To (.10

where r and ¢ are spherical coordinates and b is the distance

from the surface where T, = T . (See Griffith [121]). Then use

this along with the equations:

2 @ Cp [3T m
VT= c LJC \/Vl]

(8.11)

and Eé

_ ¢ L T .
V= ..% (..,_k___ (_......> —chfcl@- (8.12)

]
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8.3

These equations can also be solved by a numerical integration techni-

que.

Experimental Approach to Bubble Dynamics

The observation of bubble growth and collapse in non-cryogenic
fluids has indicated that the preceeding analytical approaches can
give adequate predictions of bubble dynamics. However, experimental
verification with cryogenic fluids has not yet been carried out. To
furnish information on cryogenic fluids, the bubble chamber of Figure
8.2 was designed for use with liquid nitrogen.

It has been found that plexiglas is very sensitive to clamping
stresses at liquid nitrogen temperatures and consequently no adequate
seal has been obtained with this material. The windows on the inner
chamber are made of pyrex glass 7/16 inch thick and sealed to an invar
metal holder with Armstrong epoxy cement. The CryoVac Company of Co-
lumbus, Ohio indicated that this arrangement gave satisfactory sealing
properties.

The vacuum jacket around the inner chamber serves two purposes.
It maintains a low level of heat transfer to the inner chamber and
prevents frost from forming on the windows.

There are three ways in which bubbles can be generated in the
viewing area: 1. vapor can be forced in through Tube A of Figure
8.2; 2. current can be passed through the heater; and 3. Chamber
A can be evacuated and the valve between it and the inner chamber
can be opened rapidly and cavitation would result. The first two
methods will be used for a source of bubbles to verify the analytical

results of Section 8.2.
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8.4

The subcooled liquid will be obtained by rapidly increasing
the pressure in the inner chamber; the superheated liquid will be
obtained by rapidly decreasing the pressure in the inner chamber;
and a nonuniform temperature field will result when the heater is
activated.

A photographic record of the bubble dynamics will be made in
all combinations of temperature fields. A high-speed camera that
takes 2,000 to 10,000 pictures per second will be used. The other
data to be taken includes pressure above the liquid, temperature of
the liquid away from the bubble formation, and the temperature of

the heater.

Experimental Instrumentation and Calibration

A. Pressure Measurement - Static pressure in the inner chamber
will be determined by measuring the pressure in Chamber A of Figure
8.1. The inner chamber is connected to Chamber A by a small stain-
less steel tube. Chamber A will be filled with nitrogen vapor
which has essentially zero velocity. A static pressure tap in
Chamber A is attached to a mercury manometer. Static pressures
measured in Chamber A will be approximately 1/2 inch of liquid nitro-
gen less than the static pressure at the liquid-vapor interface in
the bubble chamber. The manometer at room temperature in coordination
with a barometer can be used as a standard for static pressure measure-
ment.

B. Temperature Measurement - The temperature away from the point

of bubble formation and the temperature of the heater are to be
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measured by use of copper-constantan thermocouples. Two thermocouples
will be made by cutting one long thermocouple wire and welding both

at the cut. The composition of the thermocouples should be the same

at this point. These two thermocouples will be placed in the liquid
nitrogen in the same horizontal plane from the floor to measure the
temperature at a distance from the bubble. One additional thermocouple
will be located in the heater.

All thermocouples will use a reference temperature at the ice
point. Reference [ 139], page 159, states that the ice point is
reproducible enough to be used as a standard. Reference [139], page
206, gives a plot of some calibration work for this arrangement. Figure
(8.3) is a reproduction of the calibration work done.

Thermocouple tables for copper-constantan in the temperature range
of interest are given in reference [139], page 211, reference [140],
and reference [141].

The thermocouple output will be measured with a Rubicon type B
bridge. The temperature should reach steady state after cool-down
and remain fairly stable. One microvolt accuracies are expected.

It can be seen that the thermocouple output for the range of
-183° ¢ to -200° C for any single thermocouple can be calibrated
with a high degree of accuracy by knowing two temperatures in this
range (see Figure 8.3). The thermodynamic properties of nitrogen
[136] can be used along with the corrected static pressure in the
bubble chamber and boiling nitrogen to determine these temperatures.

By adjusting the pressure in the bubble chamber and letting the

nitrogen boil, it is possible to find the temperature of the liquid.
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The corresponding voltage output of all three thermocouples will be
read for various temperatures and a correction curve for each thermo-
couple will be drawn in this pressure range.

Before each test run, the thermocouples will be calibrated at
atmospheric pressure to insure reproducibility. The expected accuracy
of temperature measurement will be determined from this reproducibility.
The technique of Scott [137], page 125, will be used to insure that the
voltage measurement is reliable.

C. Length Measurement - The bubble radius must be measured from
a photograph. ‘he lighting will be such that liquid will photograph
black and bubbles will be white. There is a vertical plane in which
the bubbles are to be studied and the camera will be focused for that
object plane. A polished spherical glass bead will be placed in the
bubble chamber near the point of bubble formation and in the object
plane. With the nitrogen in the chamber, a filar measuring micro-
scope will be used to determine this size. Each frame taken by the
camera will have this known length on it.

D. Time Measurement - The high speed camera to be used has a
timing mark generator which marks the film one thousand times a
second. This device is simply an oscillator in the camera timing
light circuit. The timing marks will then be one millisecond apart.

Calibration for the internal oscillator can be accomplished by
comparing the 1,000 cylces per second signal from the National Bureau
of Standards Radio Station WWV to the oscillator on an oscilloscope.
The internal oscillator will be adjusted until a one-to-one Lissajous

pattern is obtained.
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Additional Experimental Studies
With the addition of a transient pressure transducer experimental
data can be taken in three other areas.

A. The equation governing bubble growth and collapse,

(8.13)

. . m
i, 2t A(D)-R. 20
2 bt —
kR
can be solved for very fast transient pressures by assuming that PV(TV)

is almost a constant. The external pressure, P (measured with the

Lo
transient pressure transducer) will be put into a computer in tabular
form and the equation can be solved by numerical integration. This
will be another check on the validity of Equation (8.13).

For slowly varying transient pressures, heat transfer must be
considered and PV(TV) can no longer be assumed constant.

B. Pressure transients in the liquid can be generated using a
piston-cylinder arrangement in the place of Chamber A (Figure 8.2).
By selecting the proper driving linkage for the piston, a rapid
decrease in pressure followed by a dwell at the minimum pressure
and then a gradual increase in pressure can be produced. This is
the type of pressure transient experienced by a liquid flowing through
a venturi. The bubble observation chamber with a piston-cylinder could
be used to compare cavitation produced in the bubble chamber to cavitation
produced in a flowing stream. This arrangement could be used to determine
the effect of fluid velocity and fluid acceleration on cavitation.

The elimination of fluid flow removes the effect of fluid viscosity
from consideration. There is still one viscosity effect if it is not

neglected in Equation (8.13).
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5. 3 g%, 4UR _A(D) -fw 2T
R + 2 R\-F Q‘R - QL Rél

(8.14)

In cavitation studies for a flowing liquid Equation (8.14) is used.

It appears that the difference in pressure drop required for
cavitation between the flow and non-flow liquids is a function of
the fluid velocity in the flowing system. If this is true, the
prediction of when cavitation will occur can be made for any system
by generating the transient pressure of that system in a static
bubble chamber and applying the velocity function. This is the
ultimate goal of the present study. It is hoped that the hydro-
dynamic tunnel and the bubble observation chamber can be used con-
currently in this endeavor.

C. This experimental apparatus including a transient pressure
transducer could be placed on a vibrating platform and the effect
of vibration upon cavitation could be studied with a high-speed

camera.

Summary

The experimental arrangement described in this chapter will
be used to verify the analytical solutions to the problems of growth
in a superheated liquid, collapse in a subcooled liquid, and growth
in a nonuniform temperature field.

It will alsc be used to study the effect of transient pressure
on bubble dynamics. There is a possibility of comparing the transient
pressure required for cavitation in a non-flow system to that in a

flowing system.
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The study of the effect of vibration upon cavitation can also

be accomplished with the bubble observation chamber.
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CHAPTER IX

Experimental Studies on Single-Phase Conduit Models

Introduction

In the following material a description is given of the experi-
mental work which has been conducted in association with the single
phase part of the study. The material includes a discussion of

experimental apparatus which has been constructed.

Description of Apparatus
For the purpose of implementation of the experimental studies,
the following equipment has been constructed.

Oscillating Piston and Drive Unit

The oscillating piston and drive unit (Figure 9.1 and 9.2) was
constructed to drive the two basic sets of experimental apparatus
detailed below. The piston is driven by a hydraulic motor capable
of speeds from nearly zero to 4000 rpm. The power supply (Figure 9.3)
consists of a gear pump directly coupled to an electric motor and

employs a flow divider valve for control of oscillator speed.

Simple Hydraulic Line Pulsation Unit

The first experimental setup (Figure 9.4) utilizes the drive
unit to impose a true sinusoidal pressure transient on the fluid
contained in an eighty foot, one inch o.d., stainless steel line

which terminated in the constant pressure reservoir (Figure 9.5).
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9.

3

A 1000 pound cement pad was used to provide a firm base for the
driver unit. Instrumentation was provided to read out driver

frequency, pressure at the pistonface, and reservoir pressure.

The Liquid Filled Vibrating Tube Unit I

The basic oscillating driver unit has been constructed so
that it may be mounted in a vertical as well as a horizontal
position. The vibrating tube unit I employed the driver, mounted
in a vertical position with the base of a plexiglas tube attached
as shown in Figure 9.6. This unit is intended for use in determining
system vibration effects both for single-phase and two-phase fluid
studies. Instrumentation is available to measure driver frequency

and system fluid pressure at various points along the tube.

Orifice Study Experimental Apparatus

In order to investigate experimentally the transmission pro-
perties of orifices in fluid conduit systems and to compare acoustic
data in the literature with hydraulic data, the test equipment shown

in Figure 9.7 was constructed.

Experimental Results
The following is a description of the tests which have been
performed using the test equipment detailed above.

Verification of Two-Dimensional Conduit Model

The first series of tests was conducted (using the hydraulic
line pulsation unit, Figure 9.4) in order to verify the two-
dimensional viscous model represented by the transfer relations

(Equations 2.23 and 2.24) and using the propagation factor given
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in Equation (6.45). Tests were conducted first with water as the
operating fluid. The frequency of the driver unit was varied from
400 rpm to 3000 rpm and the pressure disturbance at the driver end
was recorded. The pressure recording equipment consisted of a pressure
transducer with both single pin recorded and scope output. The recorder
was used in the low rpm ranges to record the traces and a camera fitted
to the scope recorded the traces in the higher rpm ranges. The system
static pressure was maintained at 500 psi, thus allowing up to 1000
psi peak-to-peak pressure variations. Figure 9.8 shows an experimental
and theoretical plot for an experimental run made with a driver amplitude
of .025 inches. The experimental data follows the theoretical predictions
well in the region of the first resonant point, but there appears to be
some discrepancy on the second resonant point. This difference stems
from the fact that there is about a 2 per cent difference in the resonant
frequencies between the experimental and theoretical data. This is a
rather small experimental error and could easily be accounted for in
the calculation of the effective speed of sound of the fluid. Since
the tube walls are not perfectly rigid, Equation (2.43) was used in
calculating the effective speed of sound. The values of K, oo and
Et used in the calculations were obtained from a handbook and there is
no assurance of their accuracy.

It is interesting to note that a common practice among writers
reporting upon conduit studies is to correct their analytical value
of the speed of sound to match their experimental data. This is

mainly due to the lack of knowledge concerning accurate values of
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K and Co for many fluids. These constants are difficult to determine
and may vary drastically depending on the type of fluid, its additives,
and other fluid parameters.

Two phenomena which occurred during the tests are worthy of note
at this point. The first was that frequency oscillations occurred in
the hydraulic drive system when the system is operated very close to
a resonant peak. This is apparently due to the great change in power
per change of frequency near these points. Because of this, the re-
sonant points must be approached very slowly in order to not induce
this oscillation. It was found to be impossible to get the system
to operate exactly at resonance. The other phenomena was the occurrence
of a superimposed sine wave upon the main disturbance at certain fre-
quencies. The exact cause of this superimposed disturbance has not
yet been determined, but it is suspected that it may be the natural
frequencies of the driver. Figure 9.9 shows typical pressure traces
when this superimposed disturbance is not noticeably present. Figure
9.10, on the other hand, shows the main sine wave plus the superimposed
wave. It was rather hard to determine the amplitude of the main dis-
turbance from these traces sc the peak-to-peak values were used. This
gives values which are too high as may be seen from the points at 1200
and 2000 in Figure 9.8. Very similar results were obtained using the
same experimental configuration but with a driver amplitude at .050
inches.

Again, using the first experimental setup with MIL-5606 hydraulic
fluid as the media, a ;iigwyas made with the .025 inch driver amplitude.

All other conditions werdé ‘similar to the previous tests. Figure 9.11

182




6 2an313 ur dniag 103 Louanbairg 13aTIQ
*sa apniyjduy 2inssaag [ejusawraadxy pue [eOI32109YL (O1°6 2Ind1g

183



shows the pressure amplitude vs. driver frequency plot for the test.
The plot of theoretical values shows good agreement with the experi-

mental data.

Orifice Study

A series of six tests were performed to determine the resistance
of various orifices situated in a fluid line as shown in Figure 9.7.
For the tests, the reservoir was pressurized to prevent cavitation
and the driver unit was utilized to impose a true sinusoidal pressure
transient on the fluid. Water at room temperature was used in the tests
and was assumed to be incompressible over the twenty-inch length between
the piston face and the orifice manifold.

Instrumentation (Figure 9.12) was provided to measure rpm of the
driver, differential pressure across the orifice, and instantaneous

flow volume.

TANK FLow ORIFICE ORIVER POWER
METER MANIFOLD wwir uNnIT
BRIDSE TRANS - AMPLIFIER
AMPLIFER OUCER
CARRIER E/uT
- DEMO, METER
IFILTER ] F'/LY'ER ]

@ PRE-AMP. RECORDU;l

$COPE

Figure 9.12 Instrumentation for Orifice Study
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In addition to the data taken under pulsating conditions, steady
flow differential pressure data was also taken so that a comparison
could be made between the steady flow resistance and nonsteady re-
sistance. The resistance values for each case were calculated by
dividing the differential pressure amplitude by the fluid velocity
amplitude.

Plots of velocity resistance versus velocity are presented in
Figures (9.13), (9.14), and (9.15) for the 0.100 inch flat, 0.2015
inch flat, and 0.2015 inch sharp edged orifices, respectively. Due
to equipment limitations, the linear region of resistance is not well
defined for this data; however, there is a marked discontinuity at the
beginning of the nonlinear region. Figure (9.16) shows a resistance
versus velocity plot of the data reported by Thurston and Martin [34].

We observe that the nonlinear region begins in the range of
v = 60 to 100 in/sec for the 0.1 inch orifice, 15-17 in/sec for the
.2015 inch flat orifice and 18-20 in/sec for the .2015 inch sharp
edged orifice. Thurston's data becomes nonlinear at a value of 0.9,
1, and 13 in/sec for the three orifices which he tested. The above
information leads us to the conclusion that there exists a character-
istic velocity at which the nonlinear region begins which is most
critically dependent on orifice size. 1In this respect, the velocity
impedance is the most convenient impedance dimension to study.

A comparison of steady flow impedance (that is resistance) with
that for purely pulsating flow is also made in Figure (9.13), (9.14)
and (9.15). 1In Figure (9.13) where the nonlinear region falls in

the velocity range of 10 to 100 in/sec, it can be seen that the transient
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flow resistance is very closely approximated by steady flow resistance.
In Figures (9.14) and (9.15), however, there is a correction factor
needed to make the same assumption since the velocity range of the
nonlinear region falls between 1 and 10 in/sec. The pulsating flow
resistance is plotted against peak velocity,

From an analysis of the experiment results we have found that
there are four distinct cases which may occur.

Case I - No steady flow component - small perturbations

For Case I we have no net steady flow component and we

assume that the pressure and velocity perturbations are small.

The experimental studies have shown that for this case the un-

steady pressure drop, AP, and the unsteady velocity are related

by the relation
A = Q‘U—-}- Idv—
P Jdt

where R 1is a linear resistance and I a linear inertance.
Generally, in the linear region, the inertance is very much

smaller than the resistance for practical frequency ranges.

Case II - No steady flow component - large perturbations

For this case we assume that the pressure and velocity
fluctuations are large enough so that we are in the nonlinear
region of the resistance and inertance. It has been shown
that in this region the relationship between the velocity
and pressure drop is given approximately by the steady flow

orifice equation (neglecting the inertance) or

DNP= Ku* .1
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where

a
)]
(2]
0]

then

Q
(Y]
(7]
®

K is adjusted to agree with experimental data.

I1 - Steady flow‘component - small perturbations
If the velocity and pressure fluctuations are small

we may use the linearized relation given by (2.53).

IV - Steady flow component - large perturbations

For this case Equation (9.1) must also be used.
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CHAPTER X
Experimental Study of the Formation of Two-Phase Flow
As Caused.by Pressure Drop
10.1 Introduction

Considerable progress has been made in the development of a
mathematical model which will describe the flow of a single-phase
fluid through conduits (see Chapter VI). The development of a
mathematical model which will describe single- and two-phase flow
has been limited because of insufficient information about the
cavitation properties of various liquids while flowing through
different pressure distributions (see Chapter IV). A small hydro-
dynamic tunnel is being constructed so that we can determine the
conditions under which profuse and limited cavitation starts and
the conditions which will cause these cavities to collapse.

This chapter will be limited to a discussion of the experi-
mental investigations to be performed with the hydrodynamic tunnel
and the tunnel design. This is necessary because the hydrodynamic

tunnel is not in operation.

10.2 Experimental Investigations
The hydrodynamic tunnel will serve as a useful apparatus in
the study of the formation of two-phase single-component flow.
This tunnel is designed so that additional investigations can be

performed without any major change in the present design.

192




10.3

The experimental investigations to be performed with the hydro-

dynamic tunnel are:

1. Determine the effect of acceleration or pressure distribution
on cavitation relaxation time for limited- and profuse-
cavitation occurring in venturi and elbow test sections.

2. Determine the conditions under which these cavities will
collapse.

3. Determine the effect of flow patterns on items 1 and 2.

4. Determine the validity of the experimental work performed
by Lehman and Young [ 57 ] (see Figure 4.17).

5. Determine the boundary conditions for the theoretical
investigation.

These investigations will be performed using several different liquids.
This will be necessary in order to determine the effect of fluid pro-
perties such as viscosity, surface tension, etc.

The items listed in the preceeding paragraph constitute the

first phase of an experimental program designed to study the effects

of vibration on the cavitation properties of cryogenic fluids flowing
through various geometries. The ultimate goal of this test program

is to provide information for use by the designer of cryogenic equip-
ment. This may be accomplished by undertaking a systematic experimental

program with dynamic (flow) and static (nonflow) systems.

Discussion of Tunnel Design
The facility to be used in the study of bubble formation and
collapse, for flowing fluids, is a closed-return hydrodynamic tunnel

designed to handle cryogenic as well as ordinary liquids. The facility
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is shown schematically in Figure 10.1. The tunnel is designed to
accommodate 18-inch long venturi test sections and elbow test sections
with various ﬁ/r0 ratios. It will be fabricated of 304 stainless
steel except for the heat exchanger and test sections and has a total
liquid capacity of about 5 U. S. gallons. The venturi test sections
will be operated in a vertical position to help simulate actual flow
patterns within a missile. A variable-speed pump-drive unit, which

is capable of providing operational flow velocities from 15 to 100
feet per second in the test sections, will be used. The Centrifugal
pump is a commercially available unit designed to handle liquid nitro-
gen. In order to reduce tunnel losses, only one test section will be
installed at any time. Corner-turning vanes and flow straighteners
will be used when uniform, steady, irrotational flow is desired at

the test section.

The tunnel facility is designed to operate over a pressure range
from O to 250 psia and a temperature range from 130 to -320 F.
High pressure nitrogen gas will be used as the tunnel pressurizing
medium. Tunnel pressures less than atmospheric will be obtained
by means of a vacuum system connected to the pressurizing line.

The heat exchanger consists of a double-pipe arrangement. The
inner pipe will be fabricated of copper to provide a good heat trans-
fer between the tunnel and the cooling or heating liquids. Provision
has been made so that fins can be installed on the copper pipe if
they are needed. The outer tube of the heat exchanger will be made
of 304 stainless steel. An O-Ring seal will be used at the upper end

of the heat exchanger to eliminate the formation of thermal stresses.
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A float type liquid level control valve will be used to control the
coolant (liquid nitrogen) level when nitrogen is being studied in
the tunnel.

The tunnel will be insulated with cork or some commercially
available material which has a thermal conductivity of about 0.01
Btu/hr ft. F. This will insure almost isothermal flow except through
the pump and heat exchanger.

The free gas present in the tunnel will be controlled with a
resorber. There is some question, however, of the optimum design
of a resorber; if they are too '"efficient,'" the amount of free
gas, or nuclei, may be insufficient for purposes of modeling in-
ception. Therefore, the tunnel will be operated without a resorber

during initial testing.
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APPENDIX B

B. Summary of Vector Notation

Given below is a list defining some of the vector notation used in
Chapter II; also given are some of the vector identities. See also
reference 4.

1. &, j and K are the unit vectors in the X, y, and z

directions respectively in a rectangular coordinate system (see Fig.

B.1.). AK

¥,; © and K are the unit vectors in the r, @ and z directions
respectively in a cylindrical coordipate system (see Fig. 1.1).

2. 7 denotes the vector operator del and is given by

Q2 (B.1)

in rectangular coordinates,

3. 7 ¢ denotes the gradient of the scalar ¢ and is given by
s . Y Y
Vg ¢§‘§+ J a(éJf K 52 (.2)

in rectangular coordinates and by
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P P I
V‘P"r%‘f* @%9 *”,(E:Tg

in cylindrical coordinatés.

4. 7 .U denotes the divergence of ¥ 1In rectangular coordinates

aa——

= av; Ny 2z
,V‘V= '—" g-é 2

and in cylindrical coordinates

S

I

Vo= L2 (W) + 4 22y 2

Y

U
LU

Y oY

5. 77 = 7® denotes the Laplacian operator. The form of this
operator depends not only on the cogqrdinate system but also upon the

variable being operated upon. In rectangular coordinates 73is always

given by
2 2 - 2
- - S
V= oSt St T2,

In cylindribﬂi toordinates we have, if ¢ is a scalar quantity,

Vie= & 5 028+ 4. Tkt T4

or if we are operating on a vector such as Y, then

VU= v v+ @ v, KIvul,

where

Y% 2 U, D%
v, - :;Y'g‘va\r(ﬂj)z l*\: 36 29 Sm
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(8. 3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)



and

2 Ly
[Pw]es L2 (v 28)4 &, 22, 22
v 5e ¥ o0 322,
6. 7 x U denotes the curl of the vector V" and is defined for
rectangular coordinates by
& J K
— o)
Vx vy VR,

7. A list of important vector identities is given below:

<3

.'7x('7(p)=0

o

. 7:.(7x7D) =0

L 7x(7xT) =7(7-9) - T°V.

(]
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APPENDIX C
C. Method of Separation of Variables

Let us review the method of separation of variables to see how Egs.
(2,24) and (2.25) are obtained from (2.22) and (2.23). The equations

to be solved are

27y _ 2 (2.22)
@ = {er s fws{ vy 22
and |

SY= JJ;VZIP. (2.23)

Both equations are linear partial differential equations, a class of equations
to which the separation of variables method may be applied. Considering

first Eq. (2.23) we assume a solution of the form

A “\
= WHr' jﬂ% (c.1)

where @r is a function of r only and @z is a function of z only. Substitution
of (C.1) into (2.23) gives
A 20 A
s {Rr.‘\y3= C_i_l)fﬁ}; d@r ¥, - {RW% cl_fﬁe 28
723 dr? dz* |
Dividing both sides of (C.2) by § yields
. A
s 4 {&h, L dh_R), 1 5B
5 R det T Ar v T e,

Eq. (C.3) may be rewritten as

1 (R _LCW) R)_s __4 C'—z—)?? (c.4)
) d\r’ Y dr YY) * @2 d2*

(€c.3)
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Since the equality defined by Eq. (C.4) must remain true regardless of the
values of r and z, thus each side of the equation must be constant or

equal to (-¢®) where o denotes the separation constant. We may now

write
2,7
d_lﬁ?._-l_so(l (
= B
and
4 (W id_%_?l‘ - S oy ©
‘:‘ CJY”Z Y CJY“ * Y~ . '

A general solution of (C.5) is
A o2 -2
Y= G774 (€ ©

and a physically consistent solution to (C.6) is

Po= C3T Y, K= o™ 3§; .

From Eqs. (C.1), (C.7) and (C.8) we have

P- TN G o] (©

or, keeping ip mind that « has a positive and a negative value, we may

write for convenience
"P‘; A T (k) e‘“. (.

The solution of Eq. (2.22) will follow in the manner as above except that

for this case 7° is of a different form so that the solution contains
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.5)

6)

.7)

8)

9)

10)




the zero-order Bessel function, thus

- L
(p= BJ_O(QY‘)Q R (C.11)

In Eq. (C.8), J, (Kr) represents the first-order Bessel function of the
first kind and J, (Br) from (C.1l) is the zero-order Bessel function

of the first kind. (See Fig. 2,2).
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